Создание игр для виртуальной реальности. Создание игры для виртуальной реальности — опыт Pixonic. VR на базе интернет-технологий

Сегодня прогресс достиг действительно небывалых высот, а новое поколение способно использовать такие возможности, о которых еще 10-15 лет назад люди лишь мечтали. То, что было мистикой и волшебством, сегодня стало техническим прогрессом. Один из таких моментов – это виртуальная реальность. Сегодня мы поговорим о том, что такое VR и как ее используют в различных сферах.

Определение виртуальной реальности

Виртуальная реальность – это созданный с помощью технического и программного обеспечения виртуальный мир, передающийся человеку через осязание, слух, а также зрение и, в некоторых случаях, обоняние. Именно объединение всех этих воздействий на чувства человека в сумме носит название интерактивного мира

Она, VR, способна с высокой точностью имитировать воздействия окружающей виртуальной действительности на человека, но для того, чтобы создать действительно правдоподобный компьютерный синтез из реакций и свойств в рамках интерактивного мира, все процессы синтеза просчитываются, анализируются и выводятся в качестве поведения в реальном времени.

Использование виртуальной реальности многогранно: в 99 процентах случаев одушевленным и неодушевленным предметам, созданным при помощи такой технологии, присущи точно такие свойства, поведение и движение, какие есть у их настоящих прототипов. При этом пользователь в состоянии оказывать на все одушевленные и неодушевленные объекты влияние согласно реальным законам физики (если игровым процессом не предусмотрены другие законы физики, что случается крайне редко).

Принцип работы

Многим интересно, как именно действует технология. Вот три главных компонента, которые используются практически при любом взаимодействии с виртуальной средой:

  1. Голова . Виртуальная среда внимательно, при помощи специализированной гарнитуры, отслеживает положение головы. Так, гарнитура двигает картинку согласно тому, в какие из сторон и когда пользователь поворачивает свою голову – в бок, вниз или вверх. Такая система официально называется шестью степенями свободы.
  2. Движения . В более дорогих модификациях технического обеспечения отслеживаются и движения пользователя, при этом виртуальная картинка будет двигаться согласно им. Речь идет здесь не об играх, в которых пользователь просто находится на месте и взаимодействует с окружением, но о тех, где он перемещается в виртуальном пространстве.
  3. Глаза . Еще один основополагающий в реальности датчик анализирует то направление, в котором смотрят глаза. Благодаря этому игра позволяет пользователю погрузиться в интерактивную реальность более глубоко.

Эффект полного присутствия

Уже по термину полного присутствия понятно, о чем именно идет речь: мир – это виртуальная реальность. Это значит, что пользователь будет ощущать себя именно там, где находится игра, и он может взаимодействовать с ней. Пользователь поворачивает голову – персонаж тоже поворачивает голову, человек шагает в своей комнате – игрок движется в интерактивной реальности. До сих пор идут споры — возможно ли

The Leap – отслеживание пальцев и кистей

Эффект от полного присутствия достигается за счет устройства The Leap. Это устройство, использующее сложную систему отслеживания каждого движения, все еще остается частью очень дорогих и ТОПовых шлемов. Однако алгоритм работы достаточно прост, и он присутствует в немного измененном виде в другом устройстве, а именно в шлеме HTC Vive.

Как контроллер, так и шлем в HTC Vive, оснащены множеством фотодиодов – небольших приборов, преобразовывающих световую энергию в электрическую.

Важный момент! Вообще человек ежедневно сталкивается с фотодиодами и их работой. Как пример, это фотодиод, отвечающий за освещение смартфона. Фотодиод определяет, сколько именно освещения падает на него, и, на основе этих данных, регулирует уровень яркости

Такой же принцип полного присутствия используется и в шлеме. В комплекте со стандартным ВР-шлемом идут две станции, которые через временные интервалы пускают пару лучей – это горизонтальный и вертикальный лучи. Они пронизывают комнату и добираются до фотодиодов на устройстве шлема и контроллера. После этого фотодиоды начинают свою работу, и за несколько секунд происходит обмен информационными данными, в ходе которого датчики передают положение контроллеров и шлема.

В этом заключается алгоритм создания полного присутствия.

Какие существует разновидности VR

Официально сейчас существует три разновидности виртуальной реальности:

  1. Имитация и компьютерное моделирование.
  2. Мнимая деятельность.
  3. Киберпространство и аппаратные средства.

VR шлемы

Главная разница между этими тремя гаджетами заключается лишь в компаниях-производителях. В остальном же они похожи. Все три шлема отличаются портативностью и обеспечением полного погружения в игровой процесс.

Плюсы и минусы виртуальной реальности

Плюсы:

  1. Возможность полностью окунуться в интерактивное измерение.
  2. Получение новых эмоций.
  3. Профилактика стресса.
  4. Создание электронных информационных и обучающих ресурсов.
  5. Проведение конференций.
  6. Создание объектов культурного наследия.
  7. Возможность визуализации различных объектов и физических явлений.
  8. Возможность для каждого перейти на новый уровень развлечений.

Минусы:

К минусам можно отнести следующие моменты:

  1. Зависимость.
  2. Еще один явный минус: виртуальная реальность и ее психологическое воздействие на человека – оно далеко не всегда бывает позитивным, так как есть риск слишком сильно погрузиться в виртуальным мир, что иногда влечет за собой проблемы в социальной и других сферах жизни.
  3. Высокая стоимость устройств.

Применение виртуальной реальности

VR можно использовать в таких сферах, как:

  1. Обучение . Сегодня интерактивная реальность позволяет смоделировать тренировочную среду в тех сферах и для тех занятий, для которых необходимой и важной является предварительная подготовка. Как пример, это может быть операция, управление техникой и другие сферы.
  2. Наука . VR дает возможность значительно ускорить исследования как атомного, так и молекулярного мира. В мире компьютерной реальности человек способен манипулировать даже атомами так, словно это конструктор.
  3. Медицина . Как и было отмечено, при помощи VR можно тренировать и обучать медицинских специалистов: проводить операции, изучать оборудование, улучшать профессиональные навыки.
  4. Архитектура и дизайн . Что может быть лучше, чем показать заказчику макет нового дома или любого другого строительного объекта при помощи такой реальности? Именно она позволяет создавать эти объекты в виртуальном пространстве, в полном размере, для демонстрации, тогда как раньше использовались ручные макеты и воображение. Это касается не только строительных объектов, но и техники.
  5. Развлечение . VR безумно популярен в игровой среде. Причем, спросом пользуются как игры, так и культурные мероприятия и туризм.

VR – вредно это или нет?

Пока что можно отметить, что никаких глобальных исследований в этой области не проводилось, однако первые выводы сделать уже можно. Так как VR еще только-только разрабатывается (и это действительно так), у многих могут появляться неприятные ощущения при продолжительном использовании этой технологии. В частности, человек будет ощущать головокружение и тошноту.

Пока что нет никаких доказательств того, что . Отрицательный эффект, несомненно, есть, однако он не настолько велик, чтобы бить тревогу. Поэтому пока неизвестно, виртуальная реальность, что это такое – вред или польза.

VR – что ждет в будущем?

Сегодня виртуальная реальность не до конца доделана, поэтому могут появляться неприятные ощущения. В будущем же появится множество устройств, копий и аналогов, которые не будут отрицательно действовать на человеческий организм и психику.

Также устройства VR смогут решить проблемы с потреблением информационных данных, а сеансы станут такими же стандартными и обыденными, как и обычные игры на компьютере или приставках в наши дни.

Вывод

Виртуальная реальность – пока что бездонная пропасть для исследования и улучшения алгоритмов работы. Сегодня технологии продвигаются очень быстро, поэтому можно с уверенностью сказать, что в ближайшем будущем рыночная стоимость комплекта будет по карману человеку со средним достатком.

Виртуальная реальность ещё не стала частью нашей повседневности, но на уровне разработок уже проникла в сферы от медицины до искусства и становится всё более доступна пользователю: самые простые VR-очки изготавливаются из картона. Постепенно VR находит своё место и в сфере детского образования, значительно меняя сам процесс обучения.

Как технологии меняют образование

Сразу скажем: речь не о том, чтобы приложения и гаджеты заменили школьникам учебники или работу в классе с учителем. Но современные технологии, такие как виртуальная и дополненная реальность, могут существенно дополнить традиционные методы и обеспечить более полное погружение в предмет изучения.

Исследования показываютThe Brain May Use Only 20 Percent of Its Memory-Forming Neurons , что мы запоминаем только 20% от того, что мы слышим, 30% - от того, что видим, и до 90% - от того, что делаем сами или испытываем во время симуляции. Виртуальная реальность позволяет получить реальный опыт присутствия, повышая эффективность обучения и вероятность запоминания.

Погулять внутри человеческого тела, совершить экспедицию на Марс, оказаться внутри химической реакции вещества - всё это позволяет совершенно иначе понимать и воспринимать предмет.

Кроме того, использование современных технологий во время школьных занятий кажется детям очень увлекательным, они с энтузиазмом погружаются в процесс. Если во время традиционного урока учителю трудно удерживать внимание всех учеников, то во время виртуального тура дети полностью вовлечены и фокусируются на 100%, поэтому процесс обучения идет с максимальной эффективностью.

Чему можно научиться в виртуальной реальности

Виртуальная реальность, как никакая другая технология, может обеспечить эффект погружения. VR - это не абстрактная информация, которую ребёнку надо запомнить, а полноценный визуальный опыт, на котором многим легче учиться.

Многие VR-приложения основаны на простой демонстрации 3D-объектов, фото или видео, но даже это фундаментально меняет процесс познания. И уже существует немало VR-приложений, в которых пользователь может активно влиять на виртуальную реальность и преобразовывать её. Мы подобрали несколько интересных VR-проектов, чтобы показать, чему школьник может научиться и что узнать с их помощью.

Путешествовать с Google Expeditions

Приложение Google содержит сотни туров и объектов в виртуальной или дополненной реальности, с которыми можно отправиться на раскопки археологов, совершить экспедицию под водой, превратить класс в музей. Пока преподаватель рассказывает, например, об океане, ученики «погружаются» на дно океана и «плавают» рядом с акулами. Или, используя дополненную реальность, учитель может устроить извержение вулкана прямо в классе, рассмотрев и обсудив его вместе с учениками.

Недорогие картонные очки Google Cardboard вместе с приложением Expeditions уже используются преподавателями в тысячах школ по всему миру.

Разобраться со сложными научными понятиями в MEL Chemistry VR

VR-уроки от Mel Science позволяют оказаться внутри химических реакций и увидеть своими глазами, что происходит с частицами веществ. Ученики могут взаимодействовать и экспериментировать с атомами и молекулами, а учитель контролирует ход VR-урока и видит прогресс каждого ученика. Мощная визуализация и эффект присутствия помогают понять суть химических явлений без бессмысленного зазубривания формул.


Рисовать в Tilt Brush

Это приложение позволяет рисовать в виртуальной реальности, где всё, что вы задумаете, возникает прямо из воздуха. Представляете, какой взрыв фантазии такие возможности вызовут у творческого школьника?

Даже если ребёнок не будет связывать свою дальнейшую жизнь с искусством, вполне вероятно, что к моменту, когда он будет получать профессиональное образование, проектирование в виртуальной реальности для многих специальностей станет обычным делом. К сожалению, VR-шлемы, необходимые для этой программы, всё ещё довольно дорогое оборудование.


Узнать о строении организма в InMind и InCell

Два очень красивых приложения, наглядно раскрывающих принципы работы мозга и клеток организма в виде игр. Анатомия вдохновляет разработчиков VR-приложений, и интересных решений в этой области можно найти немало. Мы остановились на этих двух, потому что, во-первых, это примеры российской разработки (их выпустила студия Nival VR), а во-вторых, они полностью бесплатны. Кстати, медицина - одна из сфер, где VR-технологии уже сегодня заняли заметное место в науке, практике и профессиональном обучении.



Познакомиться с виртуальной реальностью в The Lab и создавать её в CoSpaces Edu

Ещё один распространённый тип образовательных VR-приложений даёт представление о самой этой технологии. The Lab - альманах мини-игр, демонстрирующих возможности виртуальной реальности. С этого полностью бесплатного приложения рекомендуют начинать знакомство с VR.

Если ребёнок уже заинтересовался виртуальной реальностью, то ему можно предложить площадку для самостоятельного творчества. Подойдёт CoSpaces Edu: 3D-конструктор можно собирать из готовых объектов или строить их самостоятельно, а можно и писать код.


Виртуальная реальность — это искусственно созданная среда, позволяющая нам воспринимать ее как реальность.

Эти инновации используют массу технологий и разработок, которые учитывают не только техническую часть, но и человеческое восприятие, чтобы обеспечить наибольший комфорт и удобство в использовании.

Виртуальную реальность не стоит воспринимать как технологию, нацеленную исключительно на индустрию компьютерных игр. У нее есть и гораздо более серьезное использование.

Сегодня эта технология становится более дешевой, доступной и, соответственно, более широко распространенной. Именно поэтому настало самое время узнать о виртуальной реальности больше.

Что такое виртуальная реальность?

Виртуальная реальность — термин, использованный, чтобы описать созданную компьютером трехмерную окружающую среду, которая взаимодействует с органами чувств человека, позволяя ему полностью в нее погружаться.

Находясь в этой виртуальной реальности, человек в состоянии управлять объектами или выполнить ряд определенных действий.

Как создается виртуальная реальность?

Сегодня виртуальная реальность достигается с помощью компьютерных технологий. Есть ряд систем и вспомогательных гарнитур, таких как шлемы, наушники, беговые дорожки, костюмы, джойстики и т. д., которые используются с этой целью.

Все эти вспомогательные системы и технологии воздействуют на органы чувств и восприятие человека, чтобы создать иллюзию действительности.

Это намного сложнее, чем звучит в описании.

Все наши чувства и мозг развиты с одной целью — воспринимать реальность и замечать даже незначительные несостыковки. Именно поэтому мы страдаем от морской болезни, замечаем происходящее боковым зрением и чувствуем присутствие других людей, даже когда не видим их.

Все это крайне сложно воспроизвести с помощью даже самых развитых компьютерных технологий. Технология виртуальной реальности должна принимать во внимание все особенности нашей физиологии.

Если виртуальной реальности удается получить идеальное сочетание оборудования, программного обеспечения и сенсорной синхронности, мы получаем эффект погружения в вымышленную окружающую среду.

Зачем нужна виртуальная реальность?

Создание виртуальной реальности требует немалых затрат и усилий. Стоит ли игра свеч в случае этой новой разработки?

Только в индустрии развлечений виртуальная реальность способна окупить все затраты, причем в самое ближайшее время. Технология позволяет получать уникальные ощущения во время просмотра фильмов, и использования компьютерных игр.

В конце концов, одна только индустрия компьютерных игр оперирует миллиардами и готова пойти на многое, чтобы порадовать своих клиентов новинкой.

Использование

Сегодня у виртуальной реальности есть немало других назначений, гораздо более важных и серьезных.

Приложения на основе виртуальной реальности активно используются в таких областях, как:

  • Архитектура — планирование пространств и создание проектов.
  • Медицина — практика для молодых специалистов в виртуальном пространстве.
  • Искусство — виртуальные музеи и театры.
  • Развлечения — виртуальные концерты, казино, кинотеатры и т. д.
  • Армия — проведение учений и практика пилотирования.

Виртуальная реальность может привести к новым и увлекательным открытиям в этих и многих других областях, которые повлияют на нашу повседневную жизнь.

Если использование реального пространства слишком опасно, дорого или просто невозможно, на выручку может прийти виртуальная окружающая среда, полностью имитирующая реальность.

От летчиков-истребителей до нейрохирургов, виртуальная реальность помогает начинающим специалистам брать на себя виртуальные риски, чтобы получить реальный опыт.

Со снижением стоимости развитие технологий позволит виртуальной реальности занять немалую нишу в сфере образования. Не говоря уж о том, насколько сильно может измениться интерфейс наших привычных программ, компьютеров и даже бытовых приборов.

Будущее

Уже становится понятно, что виртуальная реальность готова твердо встать на ноги в самом ближайшем будущем.

в то время как Oculus Rift от Facebook, VR PlayStation от Sony и Vive от HTC с фанфарами ворвались на современный рынок, 2016 год так и не стал годом виртуальной реальности. Пожалуй, этой технологии нужно еще несколько лет, ведь далеко не все зависит исключительно от разработчиков оборудования.

Чтобы виртуальная реальность заиграла всеми красками, необходимо и усилие со стороны создателей программного обеспечения, разработчиков игр и приложений. Именно от них по большей части зависит создание платформ, привлекательных для потребителей.

Конечно, основными компьютерными устройствами оборудованию с виртуальной реальностью пока не стать. А все потому, что это оборудование не из дешевых и работать с обычным компьютером оно не будет.

Чтобы насладиться виртуальной реальностью прямо сегодня, нужно выложить немалую сумму за компьютер с повышенной производительностью, оборудование типа Oculus Rift, программное обеспечение и приложения, поддерживающие виртуальную реальность. Немногие пока способны выложить такую сумму за один раз.

Компания-производитель чипсета Nvidia опубликовала данные о том, что в 2016 году только 13 миллионов компьютеров оказались достаточно мощными для того, чтобы работать с оборудованием виртуальной реальности. То есть меньше 1 % из всех компьютеров, находящихся в использовании по всему миру, способны поддерживать эту новую технологию.

Скорее всего, оборудование в скором времени станет значительно дешевле и доступнее. Возможно, эра виртуальной реальности наступит уже через пять-шесть лет.

В школьные годы я ездил на экскурсию в Лондон, и там впервые познакомился с виртуальной реальностью (VR) в игре Zone Hunter. Технология моментально меня зацепила, и я понял – в будущем хочу работать в этой сфере! Теперь, вот уже более 12 лет, я занимаюсь виртуальными промышленными тренажёрами и написанием ПО для VR-систем.

Я основатель и президент компании с названием «i’m in VR» . Мы предлагаем средства для создания VR-приложений, такие, как MiddleVR – связующее ПО, позволяющее 3D-приложениям (например, основанным на Unity) запускаться в любой VR-системе (комнаты виртуальной реальности, шлемы и другое). У меня есть блог про виртуальную реальность, который я начал вести задолго до того, как она стала популярной, и вы можете найти меня в твиттере .

Сегодня вы можете подумать, что создавать VR-приложения проще некуда – нужно просто согласовать движение камеры с отслеживателем Oculus Rift и готово. Иногда этого действительно хватает, но для подавляющего большинства случаев такой подход не сработает.

Главное в виртуальной реальности – эффект присутствия. Если человек не может погрузиться в игру, значит, вы что-то сделали неправильно. Можно обмануть разум, заставляя его воспринимать происходящее, как иной мир, но это не так просто, как кажется. Эффект присутствия – очень зыбкое чувство.

Тексты на тему VR зачастую слишком углубляются в технические аспекты. Я думаю, что в первую очередь здесь главное то, что происходит с разумом пользователя. В этой статье я хочу осветить некоторые базовые моменты погружения в виртуальный мир и высказаться о важности разработки приложений с прицелом на эту технологию.

Виртуальная реальность в 2013-м

Виртуальная реальность погружает человека в трёхмерное окружение с помощью специальных шлемов, очков или других систем погружения. Поэтому мы часто используем термин iVR (immersive VR – виртуальная реальность с погружением), чтобы обособиться от виртуальных миров вроде Second Life или World of Warcraft. В начале 90-х эти технологии приковали к себе всеобщее внимание, но не смогли предоставить ожидаемых ощущений.

Однако, они продолжили своё развитие на фронте серьёзных игр, и сегодня превратились в полезные средства, применяющиеся в нескольких областях:

  • Обучение в виртуальных симуляторах на порядок эффективнее реальной практики: можно с высокой точностью управлять имитируемой средой, просматривать повторы и безбоязненно отрабатывать реальные манипуляции во множестве потенциально опасных ситуаций. На таких тренажёрах обучают хирургов, военных, полицейских, пожарных, стоматологов и даже рабочих по наружной отделке зданий! Это позволяет предприятиям экономить на дорогостоящих материалах и избегать различных рисков, давая более прозрачное представление о способностях практикантов.
  • У всех ведущих автопроизводителей есть VR-системы для тестирования дизайна и эргономики продуктов, которые ещё не увидели свет, позволяющие быстрее перебирать разные вариации по сравнению с реальными макетами. Это применяется и в производстве катеров, самолётов, тракторов, производственных линий, фабрик и даже кухонь! Взгляните на VR-приложения и системы от Peugeot или Ford !
  • Цифровые модели выглядят очень правдоподобно: вы можете со всех сторон рассмотреть свой будущий дом или оценить городскую планировку задолго до начала строительства. Для примера посмотрите демонстрационное видео от Enodo .
  • VR – полезное средство для исследования рынка в области розничной торговли: вы можете вживую взглянуть на внешний вид своего магазина до его постройки или переноса, проследить за движением посетителей и за направлением их взгляда. Это полезно при оценке расстановки фурнитуры и позволяет убедиться, что ваш дизайн выделяется среди прочих.
  • Виртуальная реальность – хороший способ лечения фобий: при боязни высоты можно перенестись на смоделированный утёс и прочувствовать свой страх. В этом случае помощь терапевта будет более эффективной, чем в реальных условиях на настоящей скале. То же самое относится и к боязни перелётов, пауков, собак и выступлений на публике. Таким, к примеру, занимается Стефан Бушар (Stéphane Bouchard) в Лаборатории киберпсихологии Университета Квебека в Оттаве.

И конечно же, виртуальную реальность можно использовать в играх! Но с середины 90-х таких игр было очень мало и создавались они, как правило, либо в исследовательских лабораториях, либо энтузиастами. Для сборки VR-системы и программирования самой игры требуются соответствующие навыки и оборудование. Насколько мне известно, за последние 10 лет не вышло ни одной коммерческой VR-игры.

Когда (не) стоит добавлять VR в игры

В первую очередь, нужно ответить на вопрос, действительно ли вашей игре нужна виртуальная реальность. Это как с 3D. Не каждое занятие автоматически становится интереснее в трёхмерном представлении, и что-то неподходящее будет ещё хуже выглядеть в VR.

В таком случае, где VR будет уместной идеей?

Задача виртуальной реальности – заставить вас почувствовать себя в другом мире, будь он реалистичным или не очень. Вообще, для меня эффект присутствия – это определение VR. Нет чувства присутствия – нет VR!

Очевидно, среди жанров, отлично подходящих для VR, будут игры с видом от первого лица. Вообразите Mirror’s Edge или Call of Duty в VR! В некоторые играх (Assassin’s Creed, Splinter Cell, или Gears of War) вид из-за спины потенциально можно переделать в вид из глаз, чтобы мы могли почувствовать себя в теле героя. Полагаю, мы увидим возрождение квестов и бродилок. Вероятно, виртуальная реальность появится и в совершенно других играх. Симуляторы Бога? Guitar Hero?

Но я считаю, что больше всех от VR выиграют игры, давящие на эмоции.

Хорроры могут быть очень впечатляющими. Ещё можно вспомнить про Heavy Rain. Отличная игра, я по-настоящему погружался в неё и сильно переживал. Однако, временами всё портилось неестественным взаимодействием, к тому же, там нет элемента физического присутствия. И вот тут может помочь виртуальная реальность!

VR как новый формат медиа

Тут я сразу должен предупредить: добавлять виртуальную реальность в игры может быть непростым делом, если её поддержка не задумывалась изначально. VR – это как радио или ТВ на раннем этапе развития: сначала по радио передавали только оперы, а по телевизору показывали одни спектакли. Понемногу люди стали создавать наполнение специально для этих новых форматов. Так операторская работа и монтаж стали базовыми понятиями для киносъёмки.

С виртуальной реальностью будет точно так же! Сначала пойдут адаптации уже существующих игр, не использующие эффект присутствия на полную. Пользы для новой области от них будет немного: даже, если дисплей позволяет добиться новой степени погружения, неудобное управление и неподходящий геймплей могут привести к адаптации, проигрывающей оригиналу.

Эффект присутствия

Как я и говорил, для меня определение VR – эффект присутствия. Без чувства, что вы оказались в каком-то другом месте игра останется обычной интерактивной трёхмерной средой, а не настоящей VR-средой – даже, если в неё вложены миллионы долларов. Уж поверьте, я опробовал несколько таких, и это просто беда.

При наличии эффекта присутствия игрок будет демонстрировать естественные реакции и эмоции. На высоком обрыве вы испытаете страх высоты (гарантированно). Если вам бросят виртуальный мяч, вы попытаетесь поймать его. Если нарисованный человек спасёт вас от неминуемой смерти, вы ему улыбнётесь. Я серьёзно!

Эффект присутствия – это сложная и деликатная тема. На данный момент самые интересные его исследования проводит Мэл Слэйтер (Mel Slater). В довольно известной статье он разделят ощущение присутствия на два типа: когнитивное (разум) и персептивное (чувства).

Люди нередко говорят, что чувство присутствия у них вызывают игры, фильмы, книги и даже просто кем-то рассказанная история (как глубоки корни VR!). Это когнитивное присутствие – в иные миры вас переносит воображение.

Персептивное присутствие

Вышеперечисленные способы погружения не подразумевают персептивного присутствия, которое в самом деле реалистично обманывает ваши чувства. Зрение, слух, осязание, обоняние, проприоцепция (от лат. proprius - «собственный, особенный» и receptor - «принимающий»; от лат. capio, cepi - «принимать, воспринимать»), глубокая чувствительность - ощущение положения частей собственного тела относительно друг друга, далее гугли википедию)… Не забывайте, что человеческое восприятие не идеально: человеческий мозг многое упрощает. Знание этих ограничений – являющееся основой теории VR – позволяет вам создавать персептивные иллюзии, вроде ходьбы в неправильном направлении или пространств с невозможной геометрией.

Как же этого добиться?

Я считаю, самый простой способ добиться эффекта персептивного присутствия – отслеживать движения головы. Поворот головы и поворот камеры в трёхмерном мире – основа для цикла «действие – восприятие».

Значит, вам нужна возможность совершать движения, и эти движения должны отражаться в виртуальном мире. Ваше тело вовлекается в процесс. Как сказал Антонио Дамасио: «Разум заключён в теле, а не в одном лишь мозге».

Прерывание эффекта присутствия

В свою очередь, это означает, что если действие не приводит к ожидаемому результату, разум чувствует неладное. Это называется прерыванием присутствия.

Если вы задаётесь хотя бы одной целью, создавая VR, этой целью должно быть поддержание эффекта присутствия. Чувствовать себя по среди пустой комнаты – это VR. Не чувствовать себя посреди Gears of War– это не VR.

Минимальная VR-система

Я бы рекомендовал отслеживание движений головы (повороты и смещения), хотя бы одной руки (повороты и смещение) и джойстик с парой кнопок. По личному опыту могу сказать, что такой минимум позволяет переступить определённый порог и мозг принимает другую реальность гораздо проще.

Для меня это значит, что сам по себе OculusRift– это (пока) не минимальная VR-платформа. Ему не хватает полноценного отслеживания головы, а отслеживания рук нет вообще. Я знаю, что всё это можно исправить своими силами, с помощью таких устройств, как Razer Hydra. Но пока у нас нет всеобъемлющей VR-платформы, производители не смогут спокойно полагаться на единый стандарт оборудования.

Задержки

Для виртуальной реальности враг номер один – это задержки и лаги. Если после поворота головы изображение меняется через целую секунду, мозг не воспримет это как реальность. Более того, у вас может .

Джон Кармак (John Carmack) говорит, что «при задержках менее 20 миллисекунд начинается настоящая магия – трёхмерный мир кажется незыблемым!»

Некоторые исследователи и вовсе советуют добиваться задержки менее 4 мс от момента начала движения до вывода необходимого изображения на экран. Для наглядного представления скажу, что при игре с фреймрейтом 60 fps между кадрами проходит 16 мс. Добавьте к этому задержку устройства ввода, которая может варьироваться от нескольких миллисекунд до более 100 мс в случае с Kinect, и задержку дисплея, которая тоже может быть как невысокой, так и более 50 мс у потребительских моделей VR-гарнитур.

В случае со стереоизображением нужно учитывать, что игра потребует обработки двух картинок одновременно. Будучи разработчиком, вы не можете ничего поделать с задержками ввода и дисплея, но вы должны обеспечить высокую производительность игры!

Последовательный мир не обязательно должен быть реалистичным

Мы разобрались, что персептивное присутствие – это реалистичный обман органов чувств. Когнитивное – обман разума, но не чувств – истекает из ощущения, что вы можете влиять на виртуальный мир и что события в нём происходят на самом деле. Это означает, что вы должны поверить в «правила» симуляции. Для этого нужно убедиться, что ваш мир будет не столько реалистичным, сколько связным и последовательным. К примеру, непоследовательность может проявляться в том, что игрок может взять со стола один стакан, но не может взять другой. Прерванный эффект когнитивного присутствия восстановить очень сложно. Игрок постоянно вспоминает, что вокруг не настоящий мир, и чтобы он снова показался реальным, потребуется время.

Если вы надумали создать визуально правдоподобное окружение, вероятность прерывания присутствия будет очень высока. Это из-за того, что мозг будет требовать от виртуальной реальности того, чего мы пока не можем достичь технически: реалистичную физику, обратную связь – чтобы рука не проходила сквозь предметы, разрушаемость объектов, запахи и прочее. В мире, не претендующем на реалистичность, ожидания будут занижены изначально, так что эффект присутствия будет более стойким.

Если вы смогли добиться когнитивного присутствия и разум игрока уже обманут, события симуляции начнут обманывать его чувства. Если привлекательный персонаж взглянет в глаза стеснительному игроку, его пульс повысится, он покраснеет и так далее. Люди с боязнью публичных выступлений будут говорить перед виртуальной аудиторией с тревогой в голосе.

Вот почему я считаю, что наиболее сильное погружение из всех увиденных мной приложений достигнуто в Verdun 1916-Time Machine. Оно обманывает множество чувств за раз: зрение, обоняние, осязание… Но что самое интересное: для наилучших впечатлений там специально ограничили взаимодействие с миром. Вы можете только крутить головой, поскольку вы – раненый солдат.

Учитывая это жёсткое ограничение, будет очень просто удержать игрока от прерывания присутствия. Вы не можете шевелить руками, так что и сквозь объекты они не провалятся; вас не заставляют двигаться с помощью неестественных нажатий на кнопки. Было не раз замечено, что люди улыбались, когда видели подбегающего на помощь виртуального товарища!

Измерение присутствия

Проблема в том, что очень сложно вычислить степень погружения игрока в виртуальный мир. Сейчас нет никаких абсолютных показателей, выявляющих это. Можно следить за пульсом или уровнем проводимости кожи для отслеживания тревоги. Но это работает только со стрессовыми ситуациями.

Впрочем, вы можете попробовать оценить, насколько естественны реакции игрока. Мы уже упоминали о некоторых из них – попытка поймать мяч, страх высоты, страх за своё здоровье при угрозе нападения, попытка избежать столкновения…

На этом закончим с философскими размышлениями и перейдём к практическим советам:

Масштабируйте 1 к 1

Масштаб игрового мира должен быть реальным. Камера должна располагаться на высоте, соответствующей нормальному человеческому росту (если, конечно, вы не хотите играть ребёнком, как в Among the Sleep). Движения головы не должны усиливаться (если вы не используете техники перенаправления).

Самый простой способ добиться реального масштаба: единица длины в виртуальном мире должна соответствовать реальной — 1 виртуальный метр равен 1 метру реальному. Поле зрения должно идеально совпадать с углами обзора вашего дисплея. В идеальном виртуальном мире (или большом промышленном VR-тренажёре) расстояние между глазами должно быть подсчитано с высокой точностью. Мозг будет обрабатывать все эти сигналы; вы можете не добиться эффекта присутствия или он будет нестабильным – к тому же пользователи могут почувствовать тошноту – если строго не следовать этому правилу.

Ознакомьтесь с аппаратным обеспечением

Ознакомьтесь с возможностями отслеживания: позволяет ли устройство отслеживать смещения или только повороты? Способен ли датчик сообщать данные позиционирования и в каких пределах? Какова его точность? Когда данные отслеживания перестают быть полезными? Ознакомьтесь с полем зрения: следуя совету о масштабе, вы не должны искажать виртуальное поле зрения. При узком поле зрения пользователь будет вынужден чаще мотать головой и рискнёт пропустить важные события на периферии. Ознакомьтесь с разрешением: если пользователь должен прочитать текст, придётся размещать его ближе перед глазами. Как и с разработкой под Android, ваша игра в итоге будет запускаться на большом количестве разных устройств. Вскоре нас может ожидать война множества платформ с разными характеристиками. Такие инструменты, как MiddleVR, помогут вам работать с разными VR-системами.

Не меняйте точку обзора

Если делаете игру от первого лица, избегайте видеороликов и управления транспортом от третьего лица. Это прерывает погружение.

Боритесь с плохими привычками

У многих заядлых игроков есть плохие привычки: надев шлем, они будут сидеть ровно, будто перед телевизором. Те же, кто играет редко, сразу начнут оглядываться по сторонам. Игроков нужно отучать от сегодняшних игровых ограничений. В обучающих миссиях нужно мотивировать игрока оглядываться вокруг и двигать руками. Игра должна извлекать из этого пользу. Например, в одном моём недавнем прототипе враги появлялись справа, слева и сверху, и нельзя было двигаться/осматриваться кнопками или мышкой. Чтобы победить, пользователь вынужден поворачивать голову и целиться рукой. В другом моём недавнем прототипе единственным интерактивным объектом была свеча посреди очень тёмного окружения. Отличный способ заставить игрока исследовать местность: он берёт свечу и идёт в темноту, двигая и поджигая некоторые объекты при решении головоломок.

Поддерживайте активность игроков

В том же Heavy Rain вас почти не отрывают от игрового процесса. Есть множество роликов, похожих на неигровые, но тут, вдруг, вам даётся управление. Если в это время у вас в руках нет контроллера, вы не успеете выполнить действие. Это заставляет всегда быть начеку.

Ещё одна интересная особенность Heavy Rain – события происходят в реальном времени, а значит вам нужно думать и действовать быстро: застрелить парня до того, как он убьёт моего товарища? Вас заставляют быстро принимать решения, и, как и в реальной жизни, вы никогда не узнаете, насколько правильными они были.

Придумывайте реалистичные головоломки

Опять пример из Heavy Rain: вам нужно быстро позвонить в одну из комнат гостиницы. Сможете вспомнить её номер за 15 секунд? Как и в жизни, приходится напрягать память, переживая сильный стресс.

И наконец, как можно усерднее работайте над эффектом присутствия

Создать эффект присутствия непросто. Начинайте с малого, тестируйте почаще. Работайте над присутствием постепенно, вносите небольшие изменения и тестируйте снова. Переживания игрока происходят у него в голове! Вы не создаёте переживания, а провоцируете их. Эффект присутствия должен быть естественным. Изучайте реакции пользователей и вносите изменения. Не месите в кучу все свои хорошие идеи только ради эффектного трейлера. Немало многообещающих роликов на деле оказывались отвратными играми.

Заключение

О разработке VR-приложений можно рассказать гораздо больше, но надеюсь, эта статья заострила ваше внимание на базовых принципах. Оставляю вас с цитатой, которую вы, надеюсь, будете вспоминать почаще:

«Мы относимся к виртуальной реальности, как к чему-то совершенно новому, со своими возможностями и особенностями, позволяющими создавать формы медиа, с которыми люди взаимодействуют всем своим телом, принимая всё происходящее за реальность». – Мэл Слэйтер.

По материалам Gamasutra , автор Себастьен Кунц (Sébastien Kuntz).

Одним из наиболее популярных направлений развития виртуальной и дополненной реальности является образование. Существует много различных вариантов применения современных технологий в этой области — от простых школьных туров по Древнему Египту на уроках географии до обучения специалистов для работы на сверхскоростном поезде или на космической станции. Своими замечаниями о том, какими возможности обладает виртуальная реальность в образовании, поделился Дмитрий Кириллов, руководитель VRAR lab и Cerevrum Inc .

Плюсы использования VR в образовании

Использование виртуальной реальности открывает много новых возможностей в обучении и образовании, которые слишком сложны, затратны по времени или дороги при традиционных подходах, если не всё одновременно. Можно выделить пять основных достоинств применения AR/VR технологий в образовании.

Наглядность. Используя 3D-графику, можно детализированно показать химические процессы вплоть до атомного уровня. Причем ничто не запрещает углубиться еще дальше и показать, как внутри самого атома происходит деление ядра перед ядерным взрывом. Виртуальная реальность способна не только дать сведения о самом явлении, но и продемонстрировать его с любой степенью детализации.

Безопасность. Операция на сердце, управление сверхскоростным поездом, космическим шатлом, техника безопасности при пожаре — можно погрузить зрителя в любое из этих обстоятельств без малейших угроз для жизни.

Вовлечение. Виртуальная реальность позволяет менять сценарии, влиять на ход эксперимента или решать математическую задачу в игровой и доступной для понимания форме. Во время виртуального урока можно увидеть мир прошлого глазами исторического персонажа, отправиться в путешествие по человеческому организму в микрокапсуле или выбрать верный курс на корабле Магелланна.

Фокусировка. Виртуальный мир, который окружит зрителя со всех сторон на все 360 градусов, позволит целиком сосредоточиться на материале и не отвлекаться на внешние раздражители.

Виртуальные уроки. Вид от первого лица и ощущение своего присутствия в нарисованном мире — одна из главных особенностей виртуальной реальности. Это позволяет проводить уроки целиком в виртуальной реальности.

Форматы VR в образовании

Использование новых технологий в образовании предполагает, что учебноый процесс должен быть перестроен соответствующим образом.

ОЧНОЕ ОБРАЗОВАНИЕ

Виртуальные технологии предлагают интересные возможности для передачи эмпирического материала. В данном случае классический формат обучения не искажается, так как каждый урок дополняется 5–7-минутным погружением. Может быть использован сценарий, при котором виртуальный урок делится на несколько сцен, которые в включаются в нужные моменты занятия. Лекция остается, как и прежде, структурообразующим элементом урока. Такой формат позволяет модернизировать урок, вовлечь учеников в учебный процесс, наглядно иллюстрировать и закрепить материал.

ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

При дистанционном обучении ученик может находиться в любой точке мира, равно как и преподаватель. Каждый из них будет иметь свой аватар и лично присутствовать в виртуальном классе: слушать лекции, взаимодействовать и даже выполнять групповые задания. Это позволит придать ощущение присутствия и устранить границы, которые существуют при обучении через видеоконференции. Также преподаватель сможет понять, когда ученик решит покинуть урок, так как шлемы Oculus Rift и HTC Vive оборудованы датчиком освещения, позволяющим распознать, используется шлем в данный момент или нет.

СМЕШАННОЕ ОБРАЗОВАНИЕ

При наличии обстоятельств, мешающих посещать занятия, ученик может делать это удаленно. Для этого класс должен быть оборудован камерой для съемки видео в формате 360-градусов с возможностью трансляции видео в режиме реального времени. Ученики, посещающие урок дистанционно, смогут наблюдать происходящее в классе от первого лица (например, прямо со своего места), видеть своих одноклассников, общаться с преподавателем и принимать участие в совместных уроках.

САМООБРАЗОВАНИЕ

Любой из разработанных образовательных курсов может быть адаптирован для самостоятельного изучения. Сами уроки могут размещаться в онлайн-магазинах (например, Steam, Oculus Store, App Store, Google Play Market), чтобы у всех была возможность осваивать или повторять материал самостоятельно.

Минусы использования VR в образовании

Однако пока использование технологий и сами устройства не будут максимально «отточены», будут существовать минусы и потенциальные проблемы использования виртуальной реальности в образовании.

Объем. Любая дисциплина довольно объемна, что требует больших ресурсов для создания контента на каждую тему урока — в виде полного курса или десятков и сотен небольших приложений. Компании, которые будут создавать такие материалы, должны быть готовы заниматься разработкой довольно продолжительное время без возможности ее окупить до выхода полноценных наборов уроков.

Стоимость. В случае с дистанционным обучением нагрузка по покупке устройства виртуальной реальности ложится на пользователя, или этим устройством может быть его телефон. Но образовательным учреждениям понадобится закупать комплекты оборудования для классов, в которых будут проходить занятия, что также требует существенных инвестиций.

Функциональность. Виртуальная реальность, как и любая технология, требует использования своего, специфического языка. Важно найти верные инструменты для того, чтобы сделать контент наглядным и вовлекающим. К сожалению, многие попытки создания обучающих VR-приложений не используют все возможности виртуальной реальности и, как следствие, не выполняют своей функции.

Пример: урок физики в VR

Для того, чтобы проверить эффективность и жизнеспособность использования виртуальной реальности в образовании, компания VRAr lab разработала экспериментальный урок по физике. В исследовании приняли участие 153 человека: подростки 6-17 лет, их родители и родственники. После просмотра участников попросили ответить на три вопроса: насколько хорошо усваивается учебный материал, поданный таким образом; каково отношение детей к обучению в виртуальной реальности; какие школьные предметы (по мнению школьников) предпочтительны для создания уроков в виртуальной реальности.

Урок был посвящен теме электрического тока в простейшей электрической цепи. Надев очки, пользователь оказывался в комнате перед столом, на котором была визуализирована простейшая электрическая цепь. Далее пользователь попадал внутрь проводника, где ему предстояло изучить его строение (визуализация строения атома, кристаллической решетки, условная визуализация течения электрического тока в связке с источником питания). Урок рассчитан на шесть учеников, сопровождается лекцией учителя и длится от 5 до 7 минут.

После лекции респонденты заполнили анкеты.

Усвоение материала и отношение к урокам в VR

Респондентам было предложено ответить на три закрытых вопроса анкеты: какая из перечисленных частиц не является частицей атома; из чего состоит ядро атома; какая частица отвечает за передачу электрического заряда. Результат оказался отличным – лишь 8,5% респондентов не усвоили материал.

Что касается отношения к подобным урокам, то по данным VRAR lab, 148 респондентов из 153 (97,4%) желали бы и дальнейшего применения технологий виртуальной реальности на школьных уроках, причем в качестве дисциплин большинство указало физику и химию.

В целом, эксперимент, проведенный VRAR lab, показал успешность применения VR в образовании. Современные технологии, несмотря на долгий путь развития, еще молоды, но всё же виртуальная реальность – это следующий большой рывок в развитии сферы образования. И в ближайшее время нам предстоит увидеть множество интересных открытий в этой области.

Статьи по теме: