У игры в коллекции есть. Исповедь коллекционера настольных игр: сколько настолок держать дома? Набор "Человек против машины"

Изучая свечение раствора солей урана под действием -лучей радия, советский физик П. А. Черенков обратил внимание на то, что светится и сама вода, в которой солей урана нет. Оказалось, что при пропускании -лучей (см. Гамма-излучение) через чистые жидкости все они начинают светиться. С. И. Вавилов, под руководством которого работал П. А. Черенков, высказал гипотезу, что свечение связано с движением электронов, выбиваемых -квантами радия из атомов. Действительно, свечение сильно зависело от направления магнитного поля в жидкости (это наводило на мысль, что его причина - движение электронов).

Но почему движущиеся в жидкости электроны испускают свет? Правильный ответ на этот вопрос в 1937 г. дали советские физики И. Е. Тамм и И. М. Франк.

Электрон, двигаясь в веществе, взаимодействует с окружающими его атомами. Под действием его электрического поля атомные электроны и ядра смещаются в противоположные стороны - среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль траектории электрона, испускают электромагнитные световые волны. Если скорость электрона v меньше скорости распространения света в среде ( - показатель преломления), то электромагнитное поле будет обгонять электрон, а вещество успеет поляризоваться в пространстве впереди электрона. Поляризация среды перед электроном и за ним противоположна по направлению, и излучения противоположно поляризованных атомов, «складываясь», «гасят» друг друга. Когда , атомы, до которых еще не долетел электрон, не успевают поляризоваться, и возникает излучение, направленное вдоль узкого конического слоя с вершиной, совпадающей с движущимся электроном, и углом при вершине с . Возникновение светового «конуса» и условие излучения можно получить из общих принципов распространения волн.

Рис. 1. Механизм образования волнового фронта

Пусть электрон движется по оси ОЕ (см. рис. 1) очень узкого пустого канала в однородном прозрачном веществе с показателем преломления (пустой канал нужен, чтобы в теоретическом рассмотрении не учитывать столкновений электрона с атомами). Любая точка на линии ОЕ, последовательно занимаемая электроном, будет центром испускания света. Волны, исходящие из последовательных точек О, D, Е, интерферируют друг с другом и усиливаются, если разность фаз между ними равна нулю (см. Интерференция). Это условие выполняется для направления, составляющего угол 0 с траекторией движения электрона. Угол 0 определяется соотношением: .

Действительно, рассмотрим две волны, испущенные в направлении под углом 0 к скорости электрона из двух точек траектории - точки О и точки D, разделенных расстоянием . В точку В, лежащую на прямой BE, перпендикулярной ОВ, первая волна при - через время В точку F, лежащую на прямой BE, волна, испущенная из точки , придет в момент времени после испускания волны из точки О. Эти две волны будут в фазе, т. е. прямая будет волновым фронтом, если эти времена равны: . Та как условие равенства времен дает . Во всех направлениях, для которых , свет будет гаситься из-за интерференции волн, испущенных из участков траектории, разделенных расстоянием Д. Величина Д определяется очевидным уравнением , где Т - период световых колебаний. Это уравнение всегда имеет решение, если .

Если , то направления, в котором излученные волны, интерферируя, усиливаются, не существует, не может быть больше 1.

Рис. 2. Распределение звуковых волн и формирование ударной волны при движении тела

Излучение наблюдается только, если .

На опыте электроны летят в конечном телесном угле, с некоторым разбросом по скоростям, и в результате излучение распространяется в коническом слое около основного направления, определяемого углом .

В нашем рассмотрении мы пренебрегли замедлением электрона. Это вполне допустимо, так как потери на излучение Вавилова - Черенкова малы и в первом приближении можно считать, что теряемая электроном энергия не сказывается на его скорости и он движется равномерно. В этом принципиальное отличие и необычность излучения Вавилова - Черенкова. Обычно заряды излучают, испытывая значительные ускорения.

Электрон, обгоняющий свой свет, сходен с самолетом, летящим со скоростью, большей скорости звука. В этом случае перед самолетом тоже распространяется коническая ударная звуковая волна, (см. рис. 2).

Потери энергии на излучение у быстрых заряженных частиц почти в тысячу раз меньше потерь на ионизацию. Казалось бы, что столь незначительную энергию трудно использовать в практических приложениях. Однако по излучению Вавилова - Черенкова с помощью специальных детекторов удается измерить скорость, энергию, заряд быстрых частиц.

В 1958 г. за открытие и толкование этого эффекта советским физикам П. А. Черенкову, И. М. Франку и И. Е. Тамму была присуждена Нобелевская премия по физике.

ЧЕРЕНКОВА -ВАВИЛОВА ИЗЛУЧЕНИЕ (Черенкова - Вавилова эффект, иногда наз. Вавилова - Черенкова ) - излучение света электрически заряженной частицей, возникающее при её движении в среде с пост. скоростью?, превышающей фазовую в этой среде (скорость распространения в ней световых волн). Обнаружено в 1934 при исследовании П. А. Черенковым?-люминесценции растворов как слабое голубое свечение жидкостей под действием g-излучения. Эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили характерные особенности излучения: 1) свечение наблюдается у всех чистых прозрачных жидкостей, причём его яркость мало зависит от их хим. состава; 2) излучение имеет поляризацию с преим. ориентацией вектора напряжённости электрич. поля вдоль направления первичного пучка; 3) в отличие от люминесценции , не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавилов сделал основополагающее утверждение, что обнаруженное явление - не , свет же излучают движущиеся в жидкости быстрые электроны, образующиеся при облучении вещества. Ч.- В. и. характерно не только для жидкостей, но и для твёрдых тел и газов. Свечение, вызываемое g-излучением, нек-рые учёные наблюдали и раньше (напр., M. Л. Малле, в 1926-29 получивший фотографии его спектра). Однако то, что наблюдаемое излучение - новое, ещё не изучавшееся явление, оставалось непонятым; не было установлено и наиб. характерное его свойство, обнаруженное Черенковым в 1936,- направленность излучения под острым углом к скорости частицы.

В 1937 И. E. Таммом и И. M. Франком были предложены механизм Ч.- В. и. и количеств. теория, основанная на ур-ниях классич. . К тем же результатам пришёл в 1940 В. Л. Гинзбург, осуществивший квантовое рассмотрение эффекта.

Условие возникновения Ч.- В. и. и его направленность могут быть пояснены с помощью принципа Гюйгенса. Каждую точку (А, В, С, D на рис. 1 и 2) траектории заряж. частицы следует считать источником волны, возникающей в момент прохождения через неё частицы. В оптически изотропной среде такие парциальные волны будут сферическими, распространяющимися со скоростью и = с/n , где n -показатель преломления среды. Допустим, что частица, двигаясь равномерно и прямолинейно со скоростью u, в момент наблюдения находилась в точке E . За время t до этого она проходила через точку A (AE= ut) . Волна, испущенная из А , к моменту наблюдения представится сферой радиусом R = ut; на рис. 1 и 2 ей соответствует окружность 1 , а волнам, испущенным из В, С, D, - окружности 2, 3, 4 . По принципу Гюйгенса в результате парциальные волны гасят друг друга всюду, за исключением их общей огибающей, к-рой соответствует волновая поверхность света, распространяющегося в среде.

Рис. 1. Движение заряженной частицы в среде со ско ростью u < и . Сферы 1 , 2 , 3, 4 - положение парциальных волн, испущенных частицей из точек А, В, С, D соответст венно .


Пусть u < u (рис. 1), тогда световые волны будут обгонять частицу на тем большее расстояние, чем раньше они испущены. Общей огибающей парциальные волны при этом не имеют-все окружности 1 , 2, 3, 4 лежат одна внутри другой; следовательно, электрич. при равномерном и прямолинейном движении со скоростью u < u свет не излучает.

Если же частица движется быстрее, чем распространяются световые волны, т. е. при

(где b = u/c) , то соответствующие волнам сферы пересекаются (рис. 2), их общая огибающая (волновая поверхность) представляет собой конус с вершиной в точке E , совпадающей с мгновенным положением частицы, а нормали к образующим конуса определяют , т. е. направления распространения света. Угол q, к-рый составляет волновой вектор с направлением движения частицы, удовлетворяет отношению


Рис. 2. Движение заряженной частицы в среде со ско ростью u > u . Угол между направлениями волнового вектора возникающего излучения и скоростью части цы равен q .

Такой же метод рассмотрения можно провести и для оптически анизотропной среды (в частности, для прозрачных кристаллов, см. Оптическая анизотропия ),в к-рой парциальные волны не являются сферами. В этом случае обыкновенному и необыкновенному лучам будут соответствовать разные конусы и излучение будет возникать под разными углами q к направлению распространения частицы, согласно соотношению (2). Условие (1) для оптически анизотропных сред формулируется несколько иначе. Во всех случаях осн. ф-лы теории хорошо согласуются с опытом.

Расчёт показывает, что в оптически изотропной среде частица с зарядом е , прошедшая расстояние в 1 см со скоростью u>u , излучает энергию


(w = 2nc /l-круговая частота света, l - длина волны излучаемого света в вакууме). Подынтегральное выражение отражает распределение энергии в спектре Ч.- В. и.

В жидкостях и твёрдых веществах условие (1) начинает выполняться для электронов уже при энергиях ~ 10 5 эВ, для протонов, масса к-рых в ~2000 раз больше электронной,- при энергиях - 10 8 эВ. На основе Ч.- В. и. разработаны широко применяемые эксперим. методы для регистрации частиц высоких энергий, измерения их скорости. Приборы, применяемые для этой цели, наз. черепковскими счётчиками . Эти методы позволяют также рассчитывать массу частиц (это, напр., было использовано при открытии антипротона).

Ч.- В. и. может наблюдаться в чистом виде только в идеальных случаях, когда заряж. частица движется с пост. скоростью в радиаторе неогранич. длины. В тонком радиаторе, удовлетворяющем условию (1), Ч.- В. и. неотделимо от переходного излучения , возникающего при пересечении частицей границы раздела двух сред с разными коэф. преломления.

В 1940 Э. Ферми обобщил теорию Ч.- В. и., приняв во внимание, что реальная среда обладает способностью поглощать свет, по крайней мере, в нек-рых областях спектра. Полученные им результаты внесли существ. уточнения в теорию ионизац. потерь заряж. частицами (эффект среды).

Ч.- В. и. является примером оптики "сверхсветовых" скоростей и имеет принципиальное значение. Ч.- В. и. экспериментально и теоретически изучено не только в оптически изотропных средах, но и в кристаллах, теоретически рассмотрено излучение электрич. и магн. диполей и мультиполей. Ожидаемые свойства излучения движущегося магн. заряда были использованы для поиска магнитного монополя . Рассмотрено излучение частицы в канале внутри среды (напр., излучение пучка частиц внутри волновода) и др. Новые особенности приобретает Доплера эффект в среде; появляются т. н. аномальный и сложный

При прохождении частицы через материальную среду со скоростью, превышающей скорость распространения света в этой среде, наблюдается характерное излучение.

При прохождении света через прозрачный материал, например стекло, свет распространяется медленнее, чем в вакууме. Как при перелете через континент с промежуточными посадками пассажир неизбежно теряет во времени по сравнению с беспосадочным перелетом, так и световые лучи затормаживаются, взаимодействуя с атомами среды, и не могут двигаться так же быстро, как в вакууме. Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолет, преодолевая звуковой барьер. Представить это явление нам поможет аналогия с волнами Гюйгенса (см. Принцип Гюйгенса), расходящимися вовне концентрическими кругами со скоростью света, причем каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова .

Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, физики могут рассчитать по нему скорость частицы. В сочетании с результатами других замеров это позволяет обнаруживать элементарные частицы на своем оборудовании. В современных лабораториях детекторы Черенкова установлены в комплексе с другими измерительными приборами на огромных многоэтажных стеллажах. В качестве примера можно привести детектор «Супер-Камиоканде» в лаборатории г. Камиока в Японии, который вмещает 50 000 тонн воды и оснащен 11 000 светочувствительных элементов. Излучение Черенкова можно наблюдать и невооруженным взглядом на небольших исследовательских ядерных реакторах, которые часто устанавливают на дне бассейна для обеспечения радиационной защиты. Сердечник реактора в этом случае окружен эффектным голубым свечением — это и есть излучение Черенкова под воздействием быстрых частиц, излучаемых в результате ядерной реакции.

Поскольку анализ этого излучения сыграл важнейшую роль в зарождающейся экспериментальной ядерной физике, в 1958 году Черенков, совместно с Игорем Таммом (1895-1971) и Ильей Франком (1908-90), был удостоен Нобелевской премии по физике. Тамм и Франк в 1937 году окончательно установили механизм возникновения свечения под воздействием электронов, движущихся быстрее скорости света в среде (например, в воде), а вслед за тем предсказали вскоре обнаруженное излучение Черенкова в твердых телах и газах.

Более точное название излучения Черенкова, принятое в российской научной традиции, — «излучение Черенкова—Вавилова» или «эффект Черенкова—Вавилова». Павел Черенков проводил свои исследования под руководством Сергея Ивановича Вавилова, который умер в 1951 г. и потому, согласно правилам присуждения Нобелевских премий, не был включен в число лауреатов. — Прим. переводчика.

Павел Алексеевич ЧЕРЕНКОВ1904-90

Советский физик. Родился в селе Новая Чигла Воронежской губернии в крестьянской семье. В 1928 году окончил Воронежский университет, два года работал учителем. С 1930 года и до конца своих дней работал в Физическом институте им. Лебедева Академии наук СССР (ФИАН). После работы, приведшей к открытию излучения Черенкова, занимался изучением космических лучей и разработкой ускорителей тяжелых частиц.

— это прекрасная возможность собрать личную коллекцию и получить за это уникальные награды. Например, чтобы стать обладателем специальных классовых достижений, достаточно просто открывать коробки удачи за кредиты или варбаксы. Подробней об этом рассказано ниже.

Как получить эти карточки?

Все, что нужно для получения призов, — собирать карточки. Ничего сложного! Карточки можно получить в подарок при открытии коробок удачи. Итак:

  1. Вы открываете коробки удачи в Warface. Подойдут коробки как за кредиты, так и за варбаксы.
  2. Если вам повезет, вам достанутся коллекционные карточки. Они не отображаются в виде предметов в Warface, а засчитываются на странице .
  3. Собрали коллекцию? Отлично! Скоро вы сможете забрать свой приз!

У каждой карточки свой шанс выпадения, и некоторые из них довольно редкие! Информация на сайте о полученных карточках обновляется около получаса.

Классовые коллекции

Представляем вам особые достижения для каждого игрового класса за сбор коллекций "Штурмовой отряд" , "Первая помощь" , "Фанат взрывчатки" и "Смертельный выстрел" .

Чтобы получить их, собирайте карточки выбранной коллекции из соответствующих коробок удачи. Т. е. вы можете получить карточку того класса, коробку которого откроете.

Пример. Карточки для медика находятся в коробках удачи для медика и отсутствуют в коробках удачи для штурмовика. При открытии коробки для штурмовика вы можете получить карточку для штурмовика.

Важно! В коробках удачи с оружейными наборами, знаками возвращения, дополнительным или холодным оружием классовых карточек нет.

Набор "Чемпионский характер"

Эксклюзивное достижение для зрителей турниров Warface Open Cup!


Значок "Хлеба и зрелищ"

Карты коллекции периодически раздаются во время финалов Warface Open Cup. Хотите собрать такую коллекцию? Продолжайте следить за турнирными активностями!

С маленьким шансом вы можете получить такие карты в .

Набор "Человек против машины"

Карты коллекции выдавались ранее за сражения в мини-игре " ". Собрав карты этой серии, можно получить уникальный значок!


Значок "Человек против машины"

Набор "Весенние сборы"

Коллекция разыгрывается ежегодно. Собрав карты этой серии, можно получить особый значок.


Значок "Миру — мир"

Сейчас вы можете с маленьким шансом получить такие карты в .

Набор "Череп"

Данный набор карт можно было собрать, принимая участие в . Собрав карты этой серии, можно получить особый знак отличия за поимку спецагентов Blackwood.

Значок "Скрытый удар"

Сейчас вы можете с маленьким шансом получить такие карты в .

Набор "Возмездие"

Данный набор карт можно было собрать, участвуя в сезоне " ". Собрав карты этой серии, можно получить уникальный жетон.

Жетон «Участник сезона "Возмездие"»

Сейчас вы можете с маленьким шансом получить такие карты в .

Набор "Осада"

Набор карт можно было собрать, участвуя в сезоне " ". Собрав карты этой серии, можно получить уникальное достижение.

Жетон «Участник сезона "Осада"»

Сейчас вы можете с маленьким шансом получить такие карты в .

Набор "Мозговая активность"

Этот набор карт можно было собрать, участвуя в . Собрав карты этой серии, можно получить особый значок.


Значок "Мозговой штурм"

Сейчас вы можете с маленьким шансом получить такие карты в .

Набор "Ледокол"

Данный набор карт можно было собрать, выполняя задания . Собрав карты этой серии, можно получить уникальное достижение.


Жетон «Ветеран "Ледокола"»

Статьи по теме: