Условная вероятность pa b вычисляется по формуле. Условная вероятность

Замечание. В основе определения вероятности события лежит некоторая совокупность условий . Если никаких ограничений, кроме условий при вычислении вероятности не налагается, то такие вероятности называются безусловными . Однако в ряде случаев приходится рассматривать вероятности событий при дополнительном условии, что произошло некоторое событие В.

Определение 1. Вероятность события А , вычисленная при условии, что имело место другое событие В , называется условной вероятностью события А и обозначается .

Замечание. Строго говоря, безусловные вероятности также являются условными, так как исходным моментом построенной теории было предположение о существовании некоторого неизменного комплекса условий .

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие А), если известно, что эта сумма есть чётное число (событие В)?

Решение. Построить пространство исходов, найти безусловную вероятность и условную вероятность .

Пример 2. Из колоды карт последовательно вынули 2 карты.

Найти :

а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта вышла вначале);

б) условную вероятность того, что вторая карта будет тузом, если первоначально был вынут туз.

Решение. а) Обозначим А - событие, состоящее в появлении туза на втором месте, В - событие, состоящее в появлении туза на первом месте. Событии А можно представить в виде . В силу несовместности событий и имеем . Общее число случаев вынуть из колоды в 36 карт 2 карты (выборка без повторений с учетом порядка!). Событию будут благоприятны исхода, а событию будут благоприятны исхода. Тогда .

б) Если первая вынутая карта - туз, то в колоде осталось 35 карт и среди них только 3 туза. Следовательно .

Общее решение задачи о нахождении условной вероятности для классического определения вероятности:

Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Если событий В произошло, то это означает, что наступило одно из событий , благоприятных событию В. При этом условии событию А благоприятствуют r и только r событий , благоприятных АВ. Таким образом . (1)

Аналогично, если , то . (1’)

Если В (соответственно, А) есть невозможное событие, то равенство (1) (соответственно (1’)) теряет смысл.

При каждое из равенств (1) и (1’) равносильно так называемой теореме умножения вероятностей.

Теорема умножения вероятностей. Вероятность произведения событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло: (2).


Доказательство теоремы умножения вероятностей для классической схемы случаев . Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Тогда , , а (из общего решения задачи о нахождении условной вероятности). Подставляя полученные значения вероятностей в формулу (2), получим тождество. Теорема доказана.

Замечание. Теорема умножения справедлива и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .

Следствие. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 3. В ящике находится 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в ящик. Найти вероятность того, что при первом испытании появится белый шар, при втором - черный и при третьем - синий.

Решение. Пусть событие А - при первом испытании появится белый шар, событие В - при втором испытании появится черный шар; событие С - при третьем испытании появится синий шар. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, то есть условная вероятность . Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором черный: . Так как события А, В и С совместны, то искомая вероятность

Определение 2. Событие А называется независимым от события В , если вероятность события А не зависит от того, произошло событие В или нет:

(3)

(наступление события В не меняет вероятности события А).

Определение 3. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Замечание 1. Если событие А независимо от события В, то в силу (2) имеет место равенство Отсюда следует, что , (4)

Т.е. событие В также независимо от А. Таким образом, при сделанном предположении свойство независимости событий взаимно.

Замечание 2. Понятие независимости событий играет значительную роль в теории вероятностей и её приложениях. В практических вопросах для определения независимости событий редко обращаются к выполнению равенств (3) и (4). Обычно для этого пользуются интуитивными соображениями, основанными на опыте (пример с монетой и др.). Для независимых событий теорема умножения вероятностей имеет наиболее простой вид.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

.

Замечание 3. Если независимость событий определить посредством равенства , то это определение верно всегда, в том числе и тогда, когда и .

Определение 4. События , , …, называются независимыми в совокупности , если для любого события из их числа и произвольных , , …, взаимно независимы.

Замечание 4. В силу замечания 3 это определение эквивалентно следующему.

Определение 4. При любых и .

Замечание 5. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.

Пример. Грани тетраэдра окрашены: 1-я - в красный цвет, 2-я - в зелёный, 3-я - в синий, 4-я - во все эти 4 цвета (АВС). Легко видеть, что вероятность того, что грань, на которую упадёт тетраэдр при бросании, имеет красный цвет, равна 0,5: граней 4, 2 из них имеют в окраске красный цвет. Тогда . Аналогично можно подсчитать, что

Таким образом, события А, В, С попарно независимы. Однако, если осуществились события В и С вместе, то и осуществилось событие А, т.е. . Следовательно, события А, В и С в совокупности зависимы.

Обобщение теоремы умножения вероятностей на случай произвольного конечного числа независимых событий: .

Пример 4. Вероятность того, что стрелок при одном выстреле попадет в мишень, равна . Стрелок произвел три выстрела. Найти вероятность того, что он попал три раза.

Решение. Пусть событие А - стрелок попал в мишень при первом выстреле, событие В - стрелок попал в мишень при втором выстреле; событие С - стрелок попал в мишень при третьем выстреле. Вероятности этих событий по условию равны между собой: . Так как вероятность попадания в цель при каждом из выстрелов не зависит от результата остальных выстрелов, то все три события независимы в совокупности, тогда .

Следствие. (Теорема о вероятности появления хотя бы одного из совокупности независимых событий). Вероятность появления хотя бы одного из совокупности независимых событий А А

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь - таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать - об этом как раз и будет рассказано в нашей статье.

Понятие

Условная вероятность - это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) - условная вероятность итога А;
  • Р (АВ) - вероятность совместного появления событий А и В;
  • Р (В) - вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А 1 , А 2 , А 3 ,…А п) = Р (А 1 |А 2 …А п)*Р(А 2 |А 3 …А п) * Р (А 3 |А 4 …А п)… Р (А п-1 |А п) * Р (А п).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В - вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой.

Какова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) - вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) - вероятность того, что второй ребенок тоже девочка, Р (АВ) - шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4: 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Тема: Понятие условной вероятности в примерах и задачах.


Немного статистики: более 90% студентов, пройдя полный курс теории вероятности, на экзамене не могут решить задачу на теорему умножения вероятностей, на формулу полной вероятности, формулу Байеса, не могут вычислить вероятность гипотез. Вопрос почему? После индивидуальных занятий с данными студентами выяснилось, что студенты пропустили мимо ушей такое важное понятие, как условная вероятность, и тупо пытались применять формулы при решении задач. После дополнительного занятия по теме "Условная вероятность в примерах и задачах" все студенты справились с индивидуальными заданиями.

Напомню вероятность бывает безусловной и условной. В самих названиях уже заключен смысл данных понятий: безусловная вероятность это вероятность события на которое не накладывается ни каких дополнительных условий, условная - значит имеются дополнительные условия.

Рассмотрим два примера:

Пример 1.Бросаем игральную кость, найти вероятность выпадения "6".

Пример 2.Событие то же самое, бросаем игральную кость, найти вероятность выпадения "6", если известно, что выпало четное число.

Вопрос: в каком примере условная вероятность, и в каком безусловная.

Ответ: в примере 1 - безусловная, в примере 2 - условная.

Вопрос: а в чем заключается условие?

Ответ: в том, что выпадет четное число.

Вопрос: по какой формуле будем находить вероятность в примере 1?

Ответ: по формуле классической вероятности.

Ответ: вероятность события это отношение числа благоприятных событий к числу всех возможных, если событие выпадение числа "6" обозначить через А, то запись будет выглядеть так

Вопрос: назовите число благоприятных и число всех возможных событий в первом примере?

Ответ: благоприятным будет только одно событие - это выпадение "6", значит n=1, число всех возможных событий m=6 (1,2,3,4,5,6)

Вопрос: ну и подставить в формулу надеюсь труда не составит.

Ответ:

Займемся решением второго примера, на условную вероятность.

Вопрос: по какой формуле будем находить условную вероятность.
Ответ: тоже по формуле условной вероятности, данная формула отличается от классической только с той лишь разницей, что на наше событие наложено ограничение - всех возможных событий не 6, а 3, потому что в условии сказано: выпало четное число - обозначим данное событие B, значит возможно выпадение "2", "4" или "6", отсюда m=3, число благоприятных событий не изменилось n=1, тогда условная вероятность события А при условии В равна


Условная вероятность может быть записана и так: Р(А/В)=1/3


Пример 3. Из коробки, содержащей 3 белых, 5 чёрных и 7 зеленых шаров наугад взяли 1 шар. Какова вероятность того, что шар оказался чёрного цвета, если известно, что вынутый шар не белый?

Решение по формуле условной вероятности,

или Р(А/В)=m/n


где m - число благоприятных событий, n - число всех возможных событий.
условие - шар не белого цвета, обозначим событие В.

число благоприятных событий - m=5 (черных шаров 5)
число всех возможных событий - n=12 (шар не белый, 5+7=12)
Подставляем в формулу, получаем условную вероятность вынуть черный шар

или Р(А/В)=5/12

Основной вопрос: в чем же проблема в применении понятия условной вероятности?

Ответ: в том, что формула условной вероятности внешне очень похожа на формулу классической вероятности и студенты, не вдумываясь в суть задачи, часто их путают или не понимают разницы.


Ну вот и все, что необходимо знать про условную вероятность. Более сложные задачи получаются когда данная формула комбинируется с теоремой умножения вероятностей. Также данное понятие применяется в формуле полной вероятности и формуле Байеса, но это уже тема следующих занятий.

И вопрос для самостоятельного решения: какая вероятность всегда больше условная или безусловная (если событие одно и то же)?

Статьи по теме: