Что вы знаете о теории в играх. Классический пример из теории игр - дилемма заключённого. Математическая модель в теории игр и формализация задач

Материал из Википедии - свободной энциклопедии

    1 История

    2 Представление игр

    • 2.1 Экстенсивная форма

      2.2 Нормальная форма

      2.3 Характеристическая функция

    3 Применение теории игр

    • 3.1 Описание и моделирование

      3.2 Нормативный анализ (выявление наилучшего поведения)

    4 Типы игр

    • 4.1 Кооперативные и некооперативные

      4.2 Симметричные и несимметричные

      4.3 С нулевой суммой и с ненулевой суммой

      4.4 Параллельные и последовательные

      4.5 С полной или неполной информацией

      4.6 Игры с бесконечным числом шагов

      4.7 Дискретные и непрерывные игры

      4.8 Метаигры

Тео́рия игр - математический метод изучения оптимальныхстратегий виграх . Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, ихресурсах и их возможных поступках.

Теория игр - это раздел прикладной математики , точнее -исследования операций . Чаще всего методы теории игр находят применение вэкономике , чуть реже в другихобщественных науках -социологии ,политологии ,психологии ,этике и других. Начиная с1970-х годов её взяли на вооружениебиологи для исследования поведения животных итеории эволюции . Очень важное значение она имеет дляискусственного интеллекта икибернетики , особенно с проявлением интереса кинтеллектуальным агентам .

История исследований по теории игр

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии , которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в.А. Курно иЖ.Бертраном . В начале XX в.Э.Ласкер , Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге1944 года Джона фон Неймана иОскара Моргенштерна «Теория игр и экономическое поведение» (англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница ижурналистка Сильвия Назар издала книгу о судьбеДжона Нэша ,и учёного в области теории игр; а в2001 по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил вПринстонский университет , где посещал лекцииДжона фон Неймана . В своих трудахДж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировалиантагонистические игры , когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия«равновесие по Нэшу» , или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работыДж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования.Дж. Нэш показывает, что классический подход к конкуренцииА.Смита , когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике ,технике ,антропологии . Во времяВторой мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга ,нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов вконфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работеЙохана Хёйзинга Homo Ludens (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике.. говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепцииЭрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные натрансакционном анализе . Понятие игры у Й.Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарахГ. П. Щедровицкого , основоположника организационно-деятельностного подхода. Во время Перестройки в СССРГ. П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ сталМосковский методологический кружок (ММК) .

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако, математический аппарат теории игр - затратен . Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стализа вклад в развитие теории игр, которая описывает социально-экономические процессы.Дж. Нэш , благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения«холодной войны» , что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали:Роберт Ауманн ,Райнхард Зелтен ,Джон Нэш ,Джон Харсаньи ,Уильям Викри ,Джеймс Миррлис ,Томас Шеллинг ,Джордж Акерлоф ,Майкл Спенс ,Джозеф Стиглиц ,Леонид Гурвиц ,Эрик Мэскин ,Роджер Майерсон .

Теория игр - это наука, изучающая принципы принятия решений в ситуациях, в которых несколько агентов взаимодействуют между собой. Решения, принимаемые кем-то одним, влияют на решения остальных и на исход взаимодействия в целом. Взаимодействия такого типа называются стратегическими.

Слово «игра» не должно вводить в заблуждение. Это понятие в теории игр трактуется шире, чем в повседневной жизни. Ситуация стратегического взаимодействия может быть описана в виде модели, которую и называют игрой. Таким образом, в теории игр игрой будет считаться не только игра в шахматы, но и голосование в Совете Безопасности ООН, и торг продавца с покупателем на рынке.

Стратегические взаимодействия встречаются практически в любой сфере нашей жизни. Пример из экономики: несколько компаний, конкурирующих на рынке, при принятии решений должны оглядываться на действия конкурентов. Если мы будем говорить о политике, то кандидаты, соперничающие на выборах, объявляя свою предвыборную платформу, естественно, принимают во внимание позиции других кандидатов по отношению к этому вопросу. А если мы изучаем взаимодействие людей в обществе, то с помощью теории игр можно узнать много интересного о склонности людей к кооперации.

Представители социальных наук часто используют теорию игр в качестве инструмента, который позволяет решать интересующие их задачи. Упрощая, теоретико-игровое моделирование можно разбить на два этапа.

Сначала по реальной жизненной ситуации нужно построить формальную модель. Как правило, в модели нужно отразить три основные характеристики жизненной ситуации: кто взаимодействует друг с другом (такие агенты в теории игр называются игроками), какие решения могут принимать игроки и какие платежи они в результате этого взаимодействия получают. Формальная модель и называется игрой.

Как только мы построили игру, ее нужно каким-то образом решить. На этой стадии мы полностью абстрагируемся от реальности и изучаем исключительно формальную модель. Как устроено решение модели? Мы должны зафиксировать концепцию поведения игроков в игре, то есть принципы принимаемых ими решений. Как только мы зафиксировали эту концепцию, мы можем постараться с ее помощью решить игру, то есть предъявить исход, которым закончится игра.

С помощью разных теоретико-игровых концепций можно решать разные классы игр. Один из самых красивых теоретических результатов теории игр доказывает, что в некотором очень широком классе моделей можно гарантированно найти решение. Я имею в виду результат Джона Нэша, полученный им в 1950 году: в любой конечной игре в нормальной форме можно всегда найти по крайней мере одно равновесие в смешанных стратегиях. Хронологически это была первая универсальная теоретико-игровая концепция, которая позволяет гарантированно найти решение в очень широком классе моделей.

В отличие от представителей социальных наук, математиков-игровиков больше интересуют внутренние свойства игр и концепций их решения. Именно благодаря таким теоретическим результатам мы можем быть уверены в том, что, строя и решая ту или иную теоретико-игровую модель, мы в итоге получим решение с необходимыми свойствами.

Конечно, Джон Нэш не является единоличным автором теории игр. Теория игр как самостоятельная наука начала развиваться чуть раньше, в начале ХХ века. Первые попытки формально определить игры, стратегии игроков и концепции решения игр восходят к именам Эмиля Бореля и Джона фон Неймана. Однако именно Нэш предъявил концепцию равновесия, которая позволяет гарантированно найти решение в конечных играх. В честь автора теоремы о существовании равновесия в смешанных стратегиях в конечных играх это равновесие стали называть равновесием Нэша.

Врученная в 1994 году первая Нобелевская премия за результаты в области теории игр (Джону Нэшу, Райнхарду Зелтену и Джону Харсаньи) фактически утвердила статус теории игр как самостоятельного научного направления со своими задачами и методами их решений. Последовавшие за этим еще несколько Нобелевских премий вручались как за фундаментальные теоретико-игровые результаты, так и за приложения теории игр к той или иной стороне нашей жизни. В ведущих университетах мира на программах и по экономике, и по политическим наукам теория игр обязательно входит в стандартный набор курсов. Часто ее изучают и психологи, и математики.

Сегодня, если посмотреть на секции крупных конференций и на статьи в ведущих научных журналах по теории игр, количество работ, использующих аппарат теории игр для решения прикладных задач, гораздо больше, чем количество фундаментальных теоретико-игровых результатов. Текущее состояние дисциплины можно описать так: в теории игр сформировалось достаточно мощное ядро, пласт знаний, который позволяет получать хорошие и интересные результаты исследователям из смежных областей.

Тем не менее всегда открываются новые интересные направления исследований и в самой теории игр. Так, благодаря развитию вычислительных технологий появились новые теоретико-игровые концепции, учитывающие возможности и ограничения вычислительных машин. Благодаря им появилась возможность решать новые задачи. Результат 2015 года о равновесии в одной из версий покера, полученный Боулингом, Берчем, Йохансоном и Таммелином, - замечательный пример использования современных теорий и технологий.

Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

"ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра информатики и методики преподавания информатики

Квалификационная работа

ТЕОРИЯ ИГР В НАЧАЛЬНОЙ ШКОЛЕ

Исполнитель:

Новикова Ксения Сергеевна,

студентка группы 591

Научный руководитель:

Дмитриева О.А.,

ассистент кафедры ИМПИ

Зав. кафедрой:

Матрос Д. Ш.,

докт. пед. наук, профессор

Дата допуска к защите:

Челябинск 2007

Введение

1.2 Решение матричной игры в чистых стратегиях

1.3 Решение матричной игры в смешанных стратегиях

1.4 Решение игр графическим методом

1.5 Сведение матричной игры к задаче линейного программирования

1.6 Игры с природой

Выводы по I главе

Глава II Разработка элективного курса “Элементы теории игр в начальной школе”

2.1 Место компьютера в начальной школе

2.3 Игра как метод обучения в начальной школе

2.4 Анализ программ и стандарта по информатике в начальной школе

2.5 Элективный курс

2.6 Педагогический эксперимент

2.7 Описание программного продукта

Выводы по II главе

Заключение

Список использованной литературы

Приложения

Введение

Теория игр была основана Джоном фон Нейманом и Оскаром Моргенштерном в их первой работе "The Theory of Games and Economic Behavior", изданной в 1944 году. В 1928 году в математических анналах фон Нейманом была опубликована статья "О теории общественных игр", в которой впервые было применено понятие "теория игр". Использование этого понятия объясняется схожестью логики принятия решений в таких играх, как шахматы и покер. Характерным для таких ситуаций является то, что результат для принимающего решение зависит не только от его решения, но и от того, какое решение примут другие. Поэтому оптимальный исход не может быть получен в результате принятия решения одним лицом.

Другим предшественником теории игр по праву считается французский математик Э. Борель (1871-1956). Некоторые фундаментальные идеи были независимо предложены А. Вальдом (1902-1950), заложившим основы нового подхода к статистической теории принятия решений.

Первые приложения теория игр нашла в математической статистике. Во время второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений. Ее использовали как плодотворный источник теоретических моделей в экономике и социологии. Методы теории игр используются также в теории операций и в линейном программировании.

В начальной школе для обучения детей используют различные правила и инструкции, поэтому в этом возрасте можно развивать у них алгоритмическое мышление, которое не только приводит к более прочному усвоению знаний, но и к вхождению в компьютерный мир.

Изучение "Теории игр" в начальной школе поможет сформировать у детей умение анализировать условие задачи, продумывать последовательность действий, направленных на ее выполнение. Контролировать правильность своих действий на всех этапах работы и корректировать их в случаях допущенной ошибки, то есть направить учащихся на формирование широкого спектра умений, которые будут необходимы в дальнейшей учебной и учебно-трудовой деятельности ребенка, а в будущем и любой профессиональной деятельности.

Цель: изучение теоретических положений по теории игр и создание элективного курса "Элементы теории игр в начальной школе" с методической поддержкой.

Объект исследования: Теория игр

Предмет исследования: Обучение теории игр в начальной школе.

Задачи исследования:

изучить теоретический материал

отобрать задачи для практической реализации

разработать алгоритмы решения задач

программно реализовать отобранные задачи

разработать элективный курс

создать электронное пособие

Гипотеза: если в процессе обучения использовать понятие выигрышной стратегии, то это будет способствовать развитию логического мышления и сообразительности у младших школьников, а также повысит общий уровень подготовки по информатике.

Новизна работы заключается в следующем:

На данный момент не существует школьного курса по теме теории игр в начальной школе.

Создана программная поддержка, позволяющая осуществить эффективное изучение данной темы в начальной школе.

Разработан элективный курс “Элементы теории игр в начальной школе" и программно-методическая поддержка к нему.

Глава I Основные положения Теории игр

1.1 Предмет и задачи теории игр

В процессе целенаправленной человеческой деятельности возникают ситуации, в которых интересы отдельных лиц (участников, групп, сторон) либо прямо противоположны (антагонистичны), либо, не будучи непримиримыми, все же не совпадают. Простейшими и наиболее наглядными примерами таких ситуаций являются спортивные игры, арбитражные споры, военные учения (маневры), борьба между блоками избирателей за своих кандидатов, в международных отношениях - отстаивание интересов своего государства и т.п. Здесь каждый из участников сознательно стремится добиться наилучшего результата за счет другого участника. Подобного рода ситуации встречаются и в различных сферах производственной деятельности.

Все ситуации, когда эффективность действия одного из участников зависит от действий других, можно разбить на два типа: интересы участников совпадают, и они могут договориться о совместных действиях; интересы участников не совпадают. В этих случаях может оказаться невыгодным сообщать другим участникам свои решения, так как кто-нибудь из них сможет воспользоваться знанием чужих решений и получит больший выигрыш за счет других участников. Ситуации такого типа называются конфликтными.

Для указанных ситуаций характерно, что эффективность решений, принимаемых в ходе конфликта каждой из сторон, существенно зависит от действий другой стороны. При этом ни одна из сторон не может полностью контролировать положение, так как и той и другой стороне решения приходится принимать в условиях неопределенности. Так, при определении объема выпуска продукции на одном предприятии нельзя не учитывать размеров выпуска аналогичной продукции на других предприятиях. В реальных условиях нередко возникают ситуации, в которых антагонизм отсутствует, но существуют противоположные тенденции. Например, для нормального функционирования производства, с одной стороны, необходимо наличие запасов разнообразных ресурсов, но с другой - стремление к чрезвычайному увеличению этих запасов вызывает дополнительные затраты по их содержанию и хранению. В приведенных примерах конфликтные ситуации возникают в результате сознательной деятельности людей. Однако на практике встречаются неопределенности, которые порождаются не сознательным противодействием другой стороны, а недостаточной информированностью об условиях проведения планируемой операции.

Раздел математики, изучающий конфликтные ситуации на основе их математических моделей, называется теорией игр. Таким образом, теория игр - это математическая теория конфликтных ситуаций, разрабатывающая рекомендации по наиболее рациональному образу действий каждого из участников в ходе конфликтной ситуации, т.е. таких действий, которые обеспечивали бы ему наилучший результат. Игровую схему можно придать многим ситуациям в экономике. Здесь выигрышем могут быть эффективность использования дефицитных ресурсов, производственных фондов, величина прибыли, себестоимость и т.д.

Необходимо подчеркнуть, что методы и рекомендации теории игр разрабатываются применительно к таким специфическим конфликтным ситуациям, которые обладают свойством многократной повторяемости. Если конфликтная ситуация реализуется однократно или ограниченное число раз, то рекомендации теории игр теряют смысл.

Чтобы проанализировать конфликтную ситуацию по ее математической модели, ситуацию необходимо упростить, учтя лишь важнейшие факторы, существенно влияющие на ход конфликта.

Определение 1. Игрой называется упрощенная математическая модель конфликтной ситуации, отличающаяся от реального конфликта тем, что ведется по определенным правилам.

Игра - это совокупность правил, определяющих возможные действия (чистые стратегии) участников игры. Суть игры в том, что каждый из участников принимает такие решения в развивающейся конфликтной ситуации, которые, как он полагает, могут обеспечить ему наилучший исход. Исход игры - это значение некоторой функции, называемой функцией выигрыша (платежной функцией), которая может задаваться либо аналитически выражением, либо таблично (матрицей). Величина выигрыша зависит от стратегии, применяемой игроком.

Человечество издавна пользуется такими формализованными моделями конфликтных ситуаций, которые являются играми в буквальном смысле слова. Примерами могут служить шашки, шахматы, карточные игры и т.д. Все эти игры носят характер соревнования, протекающего по известным правилам и заканчивающего "победой" (выигрышем) того или иного игрока.

Такие формально регламентированные, искусственно организованные игры представляют собой наиболее подходящий материал для иллюстрации и усвоения основных понятий теории игр. Терминология, заимствованная из практики таких игр, применяется и при анализе других конфликтных ситуаций: стороны, участвующие в них, условно именуются "игроками ", а результат столкновения - "выигрышем " одной из сторон.

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Статьи по теме: