Секреты игры судоку. Как разгадывать судоку? Правила и способы решения

Правила

Игровое поле представляет собой квадрат размером 9×9, разделённый на меньшие квадраты со стороной в 3 клетки. Таким образом, всё игровое поле состоит из 81 клетки. В них уже в начале игры стоят некоторые числа (от 1 до 9), называемые подсказками . От игрока требуется заполнить свободные клетки цифрами от 1 до 9 так, чтобы в каждой строке, в каждом столбце и в каждом малом квадрате 3×3 каждая цифра встречалась бы только один раз.

Сложность судоку зависит не от количества изначально заполненных клеток, а от методов, которые нужно применять для её решения. Самые простые решаются дедуктивно: всегда есть хотя бы одна клетка, куда подходит только одно число. Некоторые головоломки можно решить за несколько минут, на другие можно потратить часы.

Правильно составленная головоломка имеет только одно решение. Тем не менее, на некоторых сайтах в интернете под видом усложнённых головоломок пользователю предлагаются варианты судоку с несколькими вариантами решения, а также с ветвлениями самого хода решения.

Происхождение

Математическая основа

Долгое время оставался открытым вопрос о минимальном количестве подсказок, необходимых для однозначного решения судоку. В частности, не было известно, существует ли однозначно решаемая судоку с 16 подсказками. Проект распределённых вычислений Sudoku@vtaiwan на платформе BOINC занимался поиском такой судоку. В январе 2012 года появилось доказательство того, что однозначно решаемых судоку с 16 подсказками не существует.

Методы поиска решения

Лучший метод решения - записывать числа-кандидаты в вершине левого угла ячейки, а затем вычёркивать невозможные по правилам игры числа из данной ячейки. После этого можно увидеть именно те числа, которые могут занимать данную ячейку. Играть в судоку рекомендуется медленно, так как это расслабляющая игра. Некоторые головоломки можно решить за несколько минут, но на другие можно потратить часы или, в отдельных случаях, даже дни. Правильно составленная головоломка имеет единственное решение. (Однако существуют случаи, когда возможны циклические перестановки среди некоторых чисел, при которых решение переходит в другое решение, отличное от первого. Это связано с тем, что в исходной головоломке может быть задано недостаточное количество чисел.)

Сначала смотрят на ряды, столбцы и блоки 3×3 с наиболее заполненными квадратами: легче решить там, где вариантов меньше. При заполнении ячейки нужно проверить столбец, ряд и блок 3×3. Нужно проверить, что все другие 8 чисел не дублируются. Легче избежать ошибок в начале игры, чем когда в решённой загадке обнаружится противоречие. Если колонка и ряд имеют одну незаполненную ячейку, то заполняйте её. При заполнении рядов и столбцов исключать числа, которые уже вписаны.

Когда в судоку осталось несколько открытых ячеек в блоке 3×3 и только одна ячейка подходит для данного числа, то именно это число нужно записать в данную ячейку. Перед заполнением следует удостовериться, что вписываемое в ячейку число не будет встречаться в другой ячейке в том же столбце, строке или в блоке 3×3.

Когда в одном столбце, строке, или блоке 3×3 три любых ячейки имеют числа-кандидаты {1,2; 1,2; 1,3}, то число для третьей ячейки должно быть 3. Потому что, если бы это было число 1, то в одной из первых двух ячеек было бы число 2, а в другой не было бы ничего, но такого быть не может, поскольку все клетки должны быть заполнены.

Имеются две стратегии, используемые для увеличения скорости решения головоломки.

Выбрать число, которое было найдено для большинства строк, столбцов или блоков 3×3 в судоку. Для каждого блока 3×3, который не содержит это число, ищутся другие блоки 3×3 в том же самом ряду и столбце блоков 3×3, которые содержат это «наиболее решённое число» и в решаемом блоке, исключаются места, где это число, не может быть вписано в ячейку. Таким образом найдётся единственная ячейка для этого числа.

Число 9 встречается 6 раз в шести блоках 3×3. Таким образом, число 9 можно смело ставить в центральном нижнем блоке 3×3 в верхнем левом углу, а также во втором сверху правом блоке 3×3 в первой ячейке первого ряда. В центральном блоке 3×3 число 9 может стоять только в третьей ячейке второго ряда.

Середина верхнего ряда блоков 3×3 и середина нижнего ряда блоков 3×3 почти полностью заполнены. В середине верхнего блока три нерешённых числа - 1, 4, и 9. Анализируя такую ситуацию, можно вписать число 4 в центр блока, число 1 в правый верхний угол, а число 9 - в левый верхний угол. Аналогично можно поступить с нижним центральным блоком 3×3: в нём отсутствуют числа 6, 8 и 9. Ячейки заполняются последовательно: число 6 ставим в центр, число 9 в нижний правый угол, а число 8 в нижний левый угол.

Наиболее сложные судоку можно решать методом исключения («нить Ариадны»), для этого на отдельном листе в клеточку записывается текущее положение дел, выбирается поле, в котором могут стоять только два числа, при подстановке которых определяется как можно большее число пар в других клетках. Выбирается одно из чисел пары и подставляется в черновик. С вероятностью 50 % решение заведёт в тупик - что означает, что выбранное число было неправильным. В таком случае нужно «смотать нить» - вернуться к «развилке» и выбрать и подставить другое число. Если не было допущено ошибок в решении, подставленное число будет единственным верным.

Интересный подход к решению судоку использовал Cleve Moler, создатель пакета для научных расчётов MATLAB .

Разновидности

Существует множество вариаций судоку:

Настольная игра судоку

Существуют также настольные варианты игры. Подобные игры были изданы по всему миру различными издателями и разработчиками (к примеру, известный разработчик настольных игр Reiner Knizia издал свой вариант этой логической игры). В России можно встретить настольные судоку от фирмы Астрель и польской компании Trefi .

Компьютерные игры

  • KSudoku - из набора игр KDE Games .

Версии для мобильных телефонов

Существуют несколько версий игры для мобильных телефонов, а также для смартфонов. Эти версии удобны тем, что могут сами создавать условие головоломки. Также они указывают на ошибки (противоречащие цифры подсвечиваются) или могут дать подсказку в решении. 9 цифр в стандартных судоку, назначенные на 9 цифровых кнопок на мобильном телефоне, делают процесс игры очень удобным.

Соревнования по решению судоку

Во многих странах проводятся различные турниры и соревнования по решению судоку. Чемпионаты мира по решению судоку проводит Международная федерация пазлспорта , с 2007 года в них определяется и команда-победительница.

Год Место проведения Чемпион 2-й призёр 3-й призёр Команда-победительница
2006 Лукка Jana Tylova (Чехия) Thomas Snyder (США) Wei-Hwa Huang (США)
2007 Прага Thomas Snyder (США) Yuhei Kusui (Япония) Peter Hudak (Словакия)
2008 Гоа Thomas Snyder (США) Yuhei Kusui (Япония) Jakub Ondrousek (Чехия)
2009 Жилина Jan Mrozowski (Польша) Branko Ceranic (Сербия) Robert Babilon (Чехия)
2010 Филадельфия Jan Mrozowski (Польша) Jakub Ondrousek (Чехия) Hideaki Jo (Япония)
2011 Эгер Thomas Snyder (США) Kota Morinishi (Япония) Tiit Vunk (Эстония)

С 2006 года проводятся и чемпионаты России по решению судоку, организацией которых занимается клуб любителей головоломок «Диоген» .

См. также

Примечания

Ссылки

  • Более полное объяснение решения судоку (включая сложные методы) .

Литература

  • Эндрю Херон, Эдмунд Джеймс. Судоку для «чайников» = Su Doku for Dummies (Sudoku). - М .: «Диалектика», 2007. - С. 336. - ISBN 978-0-470-01892-7
  • К. Кноп. Магический квадрат или Числа на плацу // Компьютерра . - В. 09.09.2000.

Судоку - это интересная головоломка для тренировки логики, в отличие от сканвордов, где нужна эрудиция и память. Стран происхождения у судоку много, так или иначе, в нее играли в Древнем Китае, в Японии, Северной Америке… Для того чтобы нам с вами обучиться игре, мы сделали подборку Как решать судоку от легкого к сложному .

Для начала расскажем, что судоку представляет собой квадрат размером 9х9, который в свою очередь состоит из 9 квадратов размером 3х3. Каждый квадрат должен быть заполнен цифрами от одного до девяти так, чтобы каждая цифра была использована только один раз по вертикальной и горизонтальной линии, и только в квадрате 3х3.

Когда вы заполните все клетки, у вас должно получиться в каждом из 9 квадратов все числа от 1 до 9. Так, по горизонтальной линии все цифры от 1 до 9. И по вертикальной линии то же самое, смотрите рисунок:

Казалось бы, простые правила, но чтобы ответить на вопрос, как решать судоку, а тем более, если хочется знать, как решать сложные судоку (особенно тем, кто только начинает свой путь), нужно прорешать хотя бы парочку легких задач. Тогда будет понятно, о чем речь. Ниже вам представлены игры. Попробуйте распечатать их и заполнить так, чтобы все сошлось:


Как решать сложные судоку

Надеюсь, вы прочли текст сверху и разгадали задание, которое вам необходимо для того, чтобы понять, о чем пойдет речь далее. Если да, тогда продолжаем.

Эта часть статьи ответит на вопросы:

Как решать сложные судоку?

Как решать судоку: способы?

Как решать судоку: способы и методы ячеек и полей?

Итак, вам были даны две игры, разгадав которые вы приобрели навыки и получили общее представление. Для того чтобы сэкономить ваше время, я расскажу пару лайфхаков для быстрого разгадывания судоку.

1. Всегда начинайте с цифры 1 и идите сначала по линиям, а потом по квадратам. Так вы точно не запутаетесь и предостережете себя от многих ошибок.

2. Всегда проверяйте, какой цифры не хватает там, где осталось меньше пустых клеток. Это сэкономит время. И обязательно обращайте внимание на то, скольких и каких цифр не хватает в квадрате 3 на 3 (и на горизонтальных, и на вертикальных линиях).

3. Если образовалось много пустых ячеек в квадрате и вы зашли в тупик, попробуйте в уме разделить квадрат по линиям. Подумайте, какие цифры могут там стоять, и исходя из этого вы сможете понять, какие цифры будут находиться на этих же линиях в других квадратах (и возможно поймете даже то, какие цифры будут находиться в других квадратах на другой линии).

4. Не бойтесь ничего, лучше сделать ошибку и понять, почему, чем не делать ничего!

5. Больше практики и вы станете мастером.

А если люди, разгадывающие судоку, обладают еще и абстрактным интеллектом, который дает мощный потенциал для своего обладателя, то можно продвинуться далеко вперед. Подробнее о таких людях читайте .

Ниже вам представлена подборка «Как разгадать сложные судоку», после которых вам многое будет по плечу!



ВКонтакте Facebook Одноклассники

Для тех, кому нравится решать загадки cудоку самостоятельно и неспешно, формула, позволяющая быстро вычислить ответы, может показаться признанием слабости или жульничеством

Но для тех, кому разгадывание судоку стоит слишком больших усилий, это может быть буквально идеальным решением.

Два исследователя разработали математический алгоритм, который позволяет решать судоку очень быстро, без предположений и перебора с возвратом.

Исследователи комплексных сетей Золтан Торожкай и Мария Эркси-Раваз из Университета Нотр-Дама также смогли объяснить, почему некоторые загадки судоку более сложные, чем другие. Единственный недостаток в том, что для того, чтобы понять, что они предлагают, нужна степень доктора математики.


Вы можете решить эту головоломку? Она создана математиком Арто Инкалой, и, как утверждают, это самая сложная судоку в мире. Фото с сайта nature.com

Торожкай и Эркси-Раваз начали анализировать судоку как часть своего исследования теории оптимизации и вычислительной сложности. Они говорят, что большинство любителей судоку используют для решения этих задач подход «грубой силы», основанный на технике предположения. Таким образом, любители судоку вооружаются карандашом и пробуют все возможные комбинации чисел, пока не будет найден правильный ответ. Этот метод неизбежно приведет к успеху, но он трудоемок и занимает много времени.

Вместо этого Торожкай и Эркси-Раваз предложили универсальный аналоговый алгоритм, который абсолютно детерминирован (не использует предположение или перебор) и всегда находит правильное решение задачи, причем довольно быстро.


Исследователи использовали «детерминированный аналоговый решатель», чтобы заполнить эту судоку. Фото с сайта nature.com

Исследователи также обнаружили, что время, которое требуется, чтобы решить головоломку с использованием их аналогового алгоритма, коррелируется со степенью сложности задачи, которая оценивается человеком. Это вдохновило их на то, чтобы развивать шкалу ранжирования для трудности загадки или проблемы.

Они создали шкалу от 1 до 4, где 1 - «легко», 2 - «средняя степень сложности», 3 - «сложно», 4 - «очень сложно». Для решения головоломки с рейтингом 2 требуется в среднем в 10 раз больше времени, чем для задачки с рейтингом 1. Согласно этой системе, самая сложная загадка из известных до сих пор имеет рейтинг 3.6; более сложные задачи судоку пока неизвестны.


Теория начинается с картографии вероятностей для каждого отдельного квадрата. Фото с сайта nature.com

«Я не интересовался судоку, пока мы не начали работать над более общим классом выполнимости Булевых проблем, - говорит Торожкай. - Так как судоку - часть этого класса, латинский квадрат 9-го порядка оказался для нас хорошим полем для испытаний, так я с ними и познакомился. Меня и многих исследователей, изучающих такие проблемы, захватывает вопрос, как далеко мы, люди, способны зайти в решении судоку, детерминировано, без перебора, который является выбором наугад, и, если догадка не верна, нужно вернуться на шаг или на несколько шагов назад и начать сначала. Наша аналоговая модель решения детерминирована: в динамике нет никакого случайного выбора или возвращения».


Теория хаоса: степень сложности загадок показывается здесь как хаотическая динамика. Фото с сайта nature.com

Торожкай и Эркси-Раваз полагают, что их аналоговый алгоритм потенциально подходит для применения к решению большого количества разнообразных задач и проблем в промышленности, информатике и вычислительной биологии.

Опыт исследования также сделал Торожкая большим любителем судоку.

«У моей жены и у меня есть несколько приложений судоку на наших iPhone, и мы, должно быть, сыграли уже тысячи раз, соревнуясь за меньшее время на каждом уровне, - говорит он. - Она часто интуитивно видит комбинации паттернов, которых я не замечаю. Я должен их выводить. Для меня становится невозможным решить многие головоломки, которые наша шкала категоризирует как трудные или очень трудные, без того, чтобы записывать вероятности карандашом».

Методология Торожкая и Эркси-Раваз была впервые опубликована в журнале Nature Physics, а затем - в журнале Nature Scientific Reports.

Решая судоку, будьте последовательны в своих рассуждениях. Периодически проверяйте Ваши действия, ведь если вы допустите ошибку в начале решения, то она в итоге может привести к неверному решению всей головоломки. Легче избежать ошибок в начале решения, чем когда в решенной головоломке обнаружится противоречие.

Следующие способы решения судоку изложены в порядке их сложности и частоты использования на практике.

Подбор кандидатов

С этого приема начинают решать любой судоку, не зависимо от его сложности. В соответствии с предложенным заданием в пустые клетки необходимо вписать варианты чисел, которые могут быть определены исключением цифр, уже присутствующих в рядах, колонках или блоках.

Для примера рассмотрим клетку А2, она отмечена серым цветом. "1" – есть в блоке, "2" – есть в строке, "3" – есть в блоке и строке, "4" – есть в строке, "5" – есть в столбце, "7" – есть в блоке, "8" – есть в строке, "9" – есть в столбце. Соответственно, единственный вариант для данной клетки – это число "6".

Но в большинстве случаев, для каждой клетки бывает сразу несколько кандидатов. Заполним сетку всеми возможными кандидатами, для каждой клетки.

Как видно, клеток, в которых всего по одному кандидату, всего две – А2 и D9, их называют единственными кандидатами. После отыскания единственных кандидатов необходимо их также вычеркнуть из кандидатов в другие клетки (клетки этого столбца, строки, блока). Так, вычеркнув из строки 2, столбца А и блока 1 цифру "6", мы получим в клетке В1 также единственного кандидата – цифру "2". Подобным образом действуем и далее.

Однако есть и «скрытые» единственные кандидаты. Для примера возьмем, клетку I7. Данная клетка находится в 9 блоке. В данном блоке цифра 5 может находиться только в клетке I7, так как в столбцах G и H уже есть цифра 5, так же она присутствует и в строке 8. Соответственно из трех кандидатов для клетки I7 оставляем только цифру "5".

Исключение кандидатов

Описанные выше способы позволяют однозначно определить, какую необходимо вписать цифру в ту или иную клетку, следующие позволят сократить их число, что в конечном итоге приведет к единственным кандидатам.

В процессе решения может возникнуть ситуация, когда определенное число в блоке может быть расположено только в одной строке или столбце в пределах этого блока. Как следствие, это число не может находиться в других клетках этой строки или столбца за пределами блока.

Рассмотрим блок 5. В данном блоке цифра "4" может находиться только в клетках D5 и F5, т.е. в строке 5. Соответственно, в какой бы из этих двух клеток не находилась цифра "4", в строке 5 в других блоках её быть уже не может, поэтому её можно смело вычеркивать из кандидатов клетки G5.

Есть и противоположный вариант предыдущему способу. Если определенное число в строке или столбце может быть расположено только в пределах одного блока, то это же число не может находиться в других клетках рассматриваемого блока.

Так в строке 1 цифра "4" может находиться только в клетках D1 и F1, т.е. в блоке 2. Поэтому, в какой бы из этих двух клеток не находилась цифра "4", в блоке 2 в других клетках её быть уже не может, поэтому её можно смело вычеркивать из кандидатов клеток D3 и F3.

Если две клетки в блоке, строке или столбце содержат только пару одинаковых кандидатов, то эти кандидаты не могут находиться в других клетках данного блока, стоки, столбца.

Клетки G9 и H9 содержат пару кандидатов "6" и "8". Соответственно, в какой бы из этих двух клеток не находились цифры "6" и "8" (если "6" в G9, то "8" в H9, и наоборот), в блоке 9 в других клетках их быть уже не может, также как и в строке 9. Поэтому их можно смело вычеркивать из кандидатов клеток H7, G8, B9, C9, F9.

Также этот способ можно применить для трех и четырех кандидатов, только клеток в блоке, строке, столбце необходимо брать три и четыре соответственно.

Из клеток, выделенных желтым цветом, – В7, Е7, Н7 и I7 вычеркиваем кандидатов, содержащихся в клетках, выделенных серым цветом, – А7, D7 и F7.

Аналогично поступаем и с четверками. Из клеток, выделенных желтым цветом, – C1 и C6 вычеркиваем кандидатов, содержащихся в клетках, выделенных серым цветом, – С4, С5, С8 и С9.

Но часто встречаются и «скрытые» пары кандидатов. Если в двух клетках в блоке строке или столбце среди кандидатов встречается пара кандидатов, не встречающаяся ни в одной другой клетке блока, строки или столбца, то никакие другие клетки блока, строки или столбца не могут содержать кандидатов из этой пары. Поэтому, всех остальных кандидатов из этих двух клеток можно вычеркнуть.

Так, например, в столбце G пара цифр "7" и "9" встречается только в клетках G1 и G2. Следовательно, всех остальных кандидатов из этих клеток можно удалить.

Также можно искать «скрытые» тройки и четверки.

Существуют и более сложные способы, применяемые при решении судоку. Они не столько сложны в понимании, сколько в том, когда их можно применить. Так, например, если в одном из столбцов какой-либо кандидат может находиться только в двух клетках и при этом есть столбец, в котором этот же кандидат также может находиться только в двух клетках, а все эти четыре клетки образуют прямоугольник, то этот кандидат может быть исключен из других клеток этих строк.

По аналогии, из двух строк, исключаемые кандидаты тогда будут в столбцах.

В столбце А цифра "2" может быть только в двух клетках А4 и А6, а в столбце Е в Е4 и Е6. Соответственно эти пары клеток находятся в одинаковых строках – 4 и 6, образуя прямоугольник.

Образовалась определенная зависимость:

Если цифра "2" будет в клетке А4, то она же будет в клетке Е6 (в клетке Е4 её не может быть, т.к. цифра "2" уже будет в строке 4, не будет её и в клетке А6, т.к. цифра "2" уже будет в столбце А и блоке 4);

Если цифра "2" будет в клетке А6, то она же будет в клетке Е4 (в клетке Е6 её не может быть, т.к. цифра "2" уже будет в строке 6, не будет её и в клетке А4, т.к. цифра "2" уже будет в столбце Е и блоке 5).

Поэтому, где бы не находилась цифра "2", в клетках А4 и Е6 или А6 и Е4, из других клеток строк 4 и 6 можно смело вычеркивать цифру "2". Кроме того, этот способ может применяться и к блокам. Так как в блоке 4 цифра "2" обязательно будет в клетках А4 или А6, то её можно вычеркнуть и из кандидатов клеток блока 4.

Это основные способы, при помощи которых можно решать классические судоку. Если судоку не сложное, то его можно решить с помощью первых способов. Решая более сложные головоломки без последних способов не обойтись. Но эти способы не являются шаблонными, в процессе отгадывания у Вас сложится своя тактика и стратегия. Чем больше вы будете решать судоку, тем у Вас лучше это будет получаться. И всех кандидатов не надо будет записывать, а Вы легко их сможете держать «в голове».

Пример решения классического судоку

А теперь попробуем решить следующее судоку целиком.

Для начала, запишем всех кандидатов.

Теперь выявим единственных кандидатов (серые клетки). И вычеркнем их из кандидатов в другие клетки в блоках, строках, столбцах (желтые клетки).

При этом в некоторых клетках у нас опять образовались единственные кандидаты (например в строке 1 цифра "2" есть только в клетке В1), мы их также вычеркиваем из кандидатов в другие клетки блоков, строк, столбцов.

Теперь найдем «скрытых» единственных кандидатов (серые клетки). И вычеркнем их из кандидатов в другие клетки в блоках, стоках, столбцах (желтые клетки).

При этом в некоторых клетках у нас опять образовались «скрытые» единственные кандидаты (например в строке 1 цифра "5" есть только в клетке С1), мы их также вычеркиваем из кандидатов в другие клетки блоков, строк, столбцов.

Теперь берем клетку Н5. В строке 5 цифра "2" встречается только в этой клетке. Продолжаем решать наше судоку относительно этой клетки.

После того, как в некоторых клетках остались только единственные кандидаты, вычеркиваем их из других клеток строк, столбцов и блоков.

В результате получаем следующую комбинацию.

Решив её, мы приходим к единственно правильному решению:

Это один из вариантов, как можно решить данное судоку. Конечно, можно было начать решение с других клеток и другими способами, но это решение показывает то, что судоку имеет единственно правильное решение и найти его можно логическим путем, а не перебором цифр.

В предыдущих статьях мы рассматривали разные подходы в решении проблем на примерах головоломок судоку. Пришло время попытаться, в свою очередь, проиллюстрировать возможности рассмотренных подходов на достаточно сложном примере решения проблем. Итак, сегодня мы приступим к самому "невероятному" варианту судоку. Терминологию и предварительные сведения вы, уж будьте так любезны, посмотрите в , иначе вам трудно будет понять содержание данной статьи.

Вот какие сведения я нашел об этом сверхсложном варианте в интернете:

Профессор Хельсинского университета Арто Инкала (Arto Inkala) утверждает (2011г.), что он создал самый сложный в мире кроссворд судоку. Эту сложнейшую головоломку он создавал три месяца.

По его словам, созданный им кроссворд невозможно решить с помощью одной лишь только логики. Арто Инкала утверждает, что даже самые опытные игроки на решение потратят не меньше нескольких дней. Изобретение профессора получило название AI Escargot (AI – инициалы ученого, Escargot – от англ. «улитка»).

Для решения этой непростой задачи, как утверждает Арто Инкала, в голове одновременно нужно держать восемь последовательностей, в отличие от обычных головоломок, где помнить нужно об одной-двух последовательностях.

Ну, "последовательности переборов" – это все же отдает машинным вариантом решения проблем, а те, кто решал задачу Арто Инкала посредством собственных мозгов, говорят об этом по-разному. Кто-то решал ее пару месяцев, кто-то объявил о том, что на это потребовалось лишь 15 минут. Ну что ж, чемпион мира по шахматам возможно и справился бы с задачей за такое время, а экстрасенс, если таковые обитают на нашей плане, возможно и еще быстрее. А еще мог быстро решить задачу тот, кто случайно с первого разу подобрал несколько удачных цифр для заполнения пустых ячеек. Скажем, одному из тысячи решателей задачи могло бы подобным образом и повезти.

Так вот, о переборе: если удачно выбрать две три правильных цифры, то перебирать восемь последовательностей (а это десятки вариантов) может и не потребоваться. Такое у меня было соображение, когда я решил приступить к решению указанной задачи. Для начала я, будучи уже подготовленным в рамках методик предыдущих статей, решил забыть о том, что знал до сих пор. Есть такой прием, заключающийся в том, что поиск решения должен протекать свободно, без навязанных ему схем и идей. А ситуация для меня была новой, так что требовалось на нее и по-новому взглянуть. Я расположил (в Эксель) исходную таблицу (справа) и рабочую таблицу, о смысле которой я уже имел случай рассказать в первой о судоку моей статье :

Рабочая таблица, напомню, содержит предварительно допустимые сочетания цифр в исходно пустых ячейках.

После обычной почти рутинной обработки таблиц ситуации немного упростилась:

Эту ситуацию я и начал изучать. Ну а поскольку я уже подзабыл, как именно я решал эту задачу несколькими днями раньше, то начинаю осмысливать ее по новой. Прежде всего, я обратил внимание на два числа 67 в ячейках четвертого блока и совместил их с механизмом вращения (перемещения) ячеек, о котором рассказывал в предыдущей статье. Перебрав все варианты вращения трех первых столбцов таблицы, я пришел к выводу, что цифры 6 и 7 не могут находиться в одном столбце и не могут вращаться асинхронно, они, в процессе вращения, могут лишь следовать одна за другой. Также, если присмотреться, семерка с четверкой как бы передвигаются синхронно по всем трем столбцам. Поэтому я делаю правдоподобное предположение, что в нижней левой ячейке блока 4 должна разместиться цифра 7, а в правой верхней – соответственно 6.

Но этот результат я пока принимаю лишь как возможный ориентир в опробовании других вариантов. А основное внимание я обращаю на число 59 в ячейке 4-го блока. Здесь может быть либо цифра 5, либо 9. Девятка обещает уничтожить очень много лишних цифр, т.е. упростить дальнейший ход решения задачи, и я начинаю с этого варианта. Но довольно быстро захожу в "тупик", т.е. далее надо снова делать какой-то выбор и как знать, как долго мой выбор будет проверяться. Я предполагаю, что если бы девятка действительно была когда-то правильным выбором, то Инкала вряд ли бы оставил такой очевидный вариант на виду, хотя механизм его программы мог и допустить подобный ляпсус. В общем, так или иначе, я решил сначала досконально проверить вариант с цифрой 5 в ячейке с числом 59.

Но уже позже, когда решил задачу, я, так сказать для очистки совести, все же вернулся к варианту с цифрой 9, чтобы определить как долго пришлось бы его проверять. Проверять пришлось не очень долго. Когда у меня в правой верхней ячейке блока 4 оказалась цифра 6, как и полагалось по предварительно выбранному ориентиру, то в правой средней ячейке возникло число 19 (убралась 6 из 169). Я выбрал для дальнейшего опробование цифру 9 в этой ячейке и быстро пришел к противоречивому результату, т.е. выбор девятки не верен. Тогда выбираю цифру 1 и снова проверяю, что из этого выйдет.

На каком-то шаге прихожу к ситуации:

где снова приходится делать выбор – цифру 2 или 8 в верхней средней ячейке блока 4. Проверяю оба варианта (2 и 8) и в обоих случаях заканчиваю противоречивым (не отвечающим условию судоку) результатом. Так что мог бы проверить вариант с цифрой 9 в средней нижней ячейке блока 4 с самого начала и много времени на это не потребовалось бы. Но я все же, как уже говорил, остановился на цифре 5 в упомянутой ячейке. Это привело меня к следующему результату:

Расположение цифр 4 и 7 в первых трех столбцах (колонках) свидетельствует о том, что они вращаются синхронно, что собственно и предполагалось при выборе цифры 7 для нижней левой ячейки 4-го блока. При этом двойка или девятка, будь любая из них требуемой цифрой в средней левой ячейке этого блока, должны соответственно двигаться асинхронно паре 4 и 7. Предпочтение в данном случае я отдал цифре 2, так как она "обещала" устранить много лишних цифр из чисел ячеек и, соответственно, быструю проверку допустимости данного варианта. А девятка быстро заводила в тупик – требовала подбора новых цифр. Таким образом, в левой средней ячейке блока с числом 29 я проставил не мой взгляд более предпочтительную из цифр – 2. Результат вышел следующим:

Далее мне пришлось еще раз сделать так сказать полупроизвольный выбор: выбрал двойку в ячейке с числом 26 в девятом блоке. Для этого достаточно было заметить, что 5 и 2 в трех нижних строках вращаются синхронно, так как 5 не вращалась синхронно ни с 1, ни с 6. Правда, синхронно могли вращаться еще 2 и 1, но из каких-то соображений – точно не помню – я выбрал 2 вместо числа 26, возможно потому, что этот вариант, по моей оценке, быстро проверялся. Впрочем, уже оставалось немного вариантов, и можно было достаточно быстро проверить любой из них. Можно было также вместо варианта с двойкой предположить, что цифры 7 и 8 вращаются синхронно в последних трех столбцах (колонках), а отсюда следовало, что в левой верхней ячейке 9-го блока могла быть только цифра 8, что также приводит к быстрой развязке задачи.

Надо сказать, что задача Арто Инкала не допускает чисто логического решения в рамках возможностей обычного человека – так она задумана, – но все же позволяет заметить некоторые перспективные варианты перебора возможных подстановок цифр и существенно сократить этот перебор. Попробуйте начать перебор с иных, чем в данной статье, позиций, и вы, убедитесь, что почти все варианты очень быстро заводят в тупик и требуется делать все новые и новые предположения относительно дальнейшего выбора подходящих подстановок цифр. Месяца два назад я уже пытался решить эту задачу, не имея той подготовки, которую я описал в предыдущих статьях. Проверил вариантов десять ее решения и оставил дальнейшие попытки. Последний же раз, уже будучи более подготовленным, я решал эту задачу полдня или немного более, но при этом с одновременным обдумыванием выбора с моей точки зрения наиболее показательных для читателей вариантов и также с предварительным обдумыванием текста будущей статьи. А окончательный результат решения получился следующий:

Собственно, данная статья не имеет самостоятельного значения, она написана лишь для иллюстрации того, как приобретенные навыки и теоретические соображения, описанные в предыдущих статьях, позволяют решать довольно сложные проблемы. А статьи были, напомню, не о судоку, а о механизмах решения проблем на примере судоку. Предметы, как по мне, совершенно разные. Однако поскольку судоку интересует многих, то я таким образом решил привлечь внимание к более существенному вопросу, касающемуся не собственно судоку, но решения проблем.

А в остальном – желаю вам успехов в решении всех проблем.

Статьи по теме: