Условная вероятность. Теорема умножения вероятностей. Формула полной вероятности: теория и примеры решения задач

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем .

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет . Вероятность события А при условии, что событие В не произошло, будет .

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле .

Действительно, вероятность появления белого шара при первом испытании .

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

Где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем .

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения: .

Лекция 4

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень маленькую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Все зависит от конкретной задачи. Если вероятность нераскрытия парашюта 0,01, то такой парашют применять нельзя. Если электричка опоздает с вероятностью 0,01 то можно быть уверенным что она прибудет вовремя.

Достаточно малую вероятность, при которой в данной задаче событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости от 0,01 до 0,05.

Если случайное событие имеет вероятность очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит.

Условная вероятность

Произведением двух событий A и B называют событие АВ, состоящее в совместном появлении (совме­щении) этих событий. Например, если A - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событ ий. Например, если A , B , C - появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то ABC - выпадение «герба» во всех трех испытаниях.

Во введении случайное событие определено как событие, которое при осуществлении совокупности усло­вий S может произойти или не произойти.

Если при вы­числении вероятности события никаких других ограни­чений, кроме условий S, не налагается, то такую вероят­ность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной.

Например, часто вычисляют вероятность собы­тия B при дополнительном условии, что произошло со­бытие A . Безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.

Условной вероятностью Р A (В) или называют вероятность события B, вычисленную в предположении, что событие A уже наступило

Условная вероятность вычисляется по формуле

. (4.1)

Эту формулу можно доказать исходя из классического определения вероятности.

Пример 3. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероят­ность появления белого шара при втором испытании (событие В ), если при первом испытании был извлечен черный шар (событие А ).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность Р А (В ) = 3/5.

Этот же результат можно получить по формуле

Р A (В ) =P (АВ )/P (А) (P (А ) > 0).

Действительно, вероятность появления белого шара при первом ис­пытании


P (A ) = 3/6 =1/2.

Найдем вероятность P (АВ ) того, что в первом испытании по­явится черный шар, а во втором - белый по формуле (3.1). Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений = 6 5 = 30. Из этого числа исходов событию АВ благоприятствуют 3 3=9 исходов. Следовательно, P (АВ ) =9/30 = 3/10.

Условная вероятность P А (В ) =P (АВ )/Р (А ) = (3/10)/(1/2) = 3/5. Получен прежний результат.

Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.

Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е. Данные вероятности мы будем называть условными и обозначать символом; это означает вероятность события А при условии, что событие В произошло.

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?

Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте -- число очков, выпавших на второй кости.

Общее число возможных случаев -- 36, благоприятствующих событию A -- 5. Таким образом, безусловная вероятность.

Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна.

Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.

Обозначим через A событие, состоящее в появлении туза на втором месте, а через В--событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство.

В силу несовместимости событий АВ и АВ имеем:

При вынимании двух карт из колоды в 36 карт могут произойти 36*35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ -- 4*3 случаев, а событию -- 32 * 4 случаев. Таким образом,

Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .

Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий, благоприятствующих В. При этом условии событию А благоприятствуют r и только r событий Aj, благоприятствующих АВ. Таким образом,

Точно так же можно вывести, что

Понятно, что

т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.

Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и.

Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция. Если, то

Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.

Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой.

Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.

Если событие А независимо от В, то имеет место равенство

Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.

Если события А и В независимы, то независимы также события А и. Действительно, так как

Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.

Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.

Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это -- события независимые.

Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то

Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.

Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых

Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.

Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я -- в красный цвет (A), 2-я -- в зеленый (В), третья -- в синий (С) и 4-я -- во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.

события A,В,С, таким образом, попарно независимы.

Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .

Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению

(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Статьи по теме: