Подбросили 3 игральные сумма выпавших очков кости. Вероятность игральной кости. Удобный генератор кубиков

18. Среди родителей детей, обучающихся в 6 классе есть, те, кто работает, и есть те, кто учится. На глобусе проведены 17 параллелей и 24 меридиана. В ответе укажите номера выбранных утверждений без пробелов, запятых и других дополнительных символов. 4 балла) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.

Все голосовавшие за партию «Мандарин» любят мандарины. Всё хо­ро­шо, кроме рас­сто­я­ния между D и A. Чтобы оно было таким, каким нужно, по­дви­нем D и по­ста­вим между B и A нуж­ным об­ра­зом. 4) Среди этих четырёх домов точно нет двух с оди­на­ко­вым ко­ли­че­ством эта­жей.

Например, есть задачи, в которых надо сравнить величины и всем понятно, что диаметр монеты можно измерить в миллиметрах, высоту дома в метрах, а расстояние между городами в километрах. Главное в этой задаче правильно сделать чертёж. Теперь ясно, что от С до В – 10 км. Итак, ответ: 10.В задаче про кольцевую дорогу опечатка. У меня там растут груши и яблони, причём яблони посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши».

В один из дней недели он обменял все свои рубли на тугрики. Оказалось, что периметр каждого из получившихся прямоугольников - целое число метров. Задача 5. В честь праздника 1% солдат в полку получили новое обмундирование. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. Задача 3. Лиса и два медвежонка делят 100 конфет. Задача 6. В Пустоземье живут три племени: эльфы, гоблины и хоббиты.

Най­ди­те рас­сто­я­ние между B и C. Ответ дайте в ки­ло­мет­рах. Рас­по­ло­жим А, В, C, D вдоль коль­це­вой до­ро­ги по оче­ре­ди так, чтобы рас­сто­я­ния со­от­вет­ство­ва­ли дан­ным в усло­вии. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов.

7 класс (Москва, 2005 г.)

Най­ди­те вы­со­ту l этого стол­ба, если наи­мень­шая вы­со­та h1 перил от­но­си­тель­но земли равна 1,5 м, а наи­боль­шая h2 равна 2,5 м. Ответ дайте в мет­рах. Какие марш­ру­ты дол­жен вы­брать пу­те­ше­ствен­ник, чтобы по­бы­вать во всех четырёх го­ро­дах и за­тра­тить на все по­езд­ки менее 5000 руб­лей?

9-й математический праздник. 22 февраля 1998 года

1) Дом Тани самый ма­ло­этаж­ный среди пе­ре­чис­лен­ных четырёх. 3) В Ко­сти­ном доме боль­ше эта­жей, чем в Та­ни­ном. Когда объявили о разделении ЕГЭ 2015 года по математике на два уровня – базовый и профильный, многие решили, что задания базового уровня будут совсем простыми. Отчасти, так оно и есть. Для ответа на некоторые вопросы надо просто обладать здравым смыслом.

Есть простые задачи на конкретные математические знания: решение уравнения, примеры на вычисления и преобразования выражений. Давайте рассмотрим одну такую задачу. Прежде, чем решать, сделаем небольшой экскурс в географию. Параллели опоясывают земной шар и не пересекаются между собой. Меридианы, напротив, пересекаются в точках, соответствующих Северному и Южному полюсам. А теперь приступим к решению задачи.

А меридианы? Проведём один меридиан, и получим одну целую (не разрезанную) поверхность. Просмотрела ещё раз решение и полностью с Вами согласна. Наташа предположила, что это будет верно и в любом другом году, за исключением тех лет, когда центры клеток 10, 20 и 30 лежат на одной прямой. 2 балла] Назовите первый номер матпраздника, для которого это тоже было выполнено. Задача 6. Петя закрасил одну клетку прямоугольника.

Задача 1. На рисунке изображено, как изменялся курс тугрика в течение недели. Задача 4. Бумага расчерчена на клеточки со стороной 1. Ваня вырезал из неё по клеточкам прямоугольник и нашёл его площадь и периметр. 3 балла] Приведите пример такого прямоугольника и такого квадрата. Задача 5. Решите ребус 250*ЛЕТ+МГУ=2005*ГОД.

Каждой реформой недовольна ровно половина всех граждан. Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Сложите из фигур, изображенных на рисунке, квадрат размером 9*9 с вырезанным в его центре квадратом 3*3 (фигуры можно не только поворачивать, но и переворачивать).

вторник, 24 февраля 2015 г.

Задача 4. Прямоугольник разрезали шестью вертикальными и шестью горизонтальными разрезами на 49 прямоугольников (см. рисунок). Задача 6. Куб размером 3*3*3 состоит из 27 единичных кубиков. 2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)? В написанном на доске примере на умножение хулиган Петя исправил две цифры. Получилось 4*5*4*5*4=2247.

Задача 5. В числах МИХАЙЛО и ЛОМОНОСОВ каждая буква обозначает цифру (разным буквам соответствуют разные цифры)

У Васи есть пластмассовый угольник (без делений) с углами 30 o , 60 o и 90 o . Ему нужно построить угол в 15 o . Как это сделать, не используя других инструментов? В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. В стене имеется маленькая дырка (точка).

Отметьте на доске 8*8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой

Приложите к нему какой-нибудь треугольник (эти треугольники должны иметь общую сторону, но не должны перекрываться даже частично) так, чтобы получился треугольник с двумя равными сторонами. В котором часу в тот день был рассвет? Докажите, что два из этих квадратов имеют одинаковый размер. На сколько частей разделена поверхность глобуса? Сколько процентов голосов набрала партия «Мандарин» на выборах, если ровно 46% участвовавших в голосовании любят мандарины?

В квадрате 7*7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по 3 закрашенных клетки. 8 баллов) Найдите расстояние между B и C (укажите все возможности). В условии задачи 24 параллели и они разбивают всю поверхность на 25 частей. На две. Проведём ещё одну – разбилась на три. Третья параллель разобьёт поверхность земного шара на четыре части и т. д. Видна закономерность. Наташа и Инна купили по одинаковой коробке чая в пакетиках.

Задачи на вероятность игральной кости не менее популярны, чем задачи о подбрасывании монет. Условие такой задачи обычно звучит так: при бросании одной или нескольких игральных костей (2 или 3), какова вероятность того, что сумма очков будет равна 10, или число очков равно 4, или произведение числа очков, или делится на 2 произведение числа очков и так далее.

Применение формулы классической вероятности является основным методом решения задач такого типа.

Одна игральная кость, вероятность.

Достаточно просто обстоит дело с одной игральной костью. определяется по формуле: P=m/n, где m - это число благоприятствующих событию исходов, а n - число всех элементарных равновозможных исходов эксперимента с подбрасыванием кости или кубика.

Задача 1. Один раз брошена игральная кость. Какова вероятность выпадения четного числа очков?

Поскольку игральная кость собой представляет кубик (или его еще называют правильной игральной костью, на все грани кубик выпадет с одинаковой вероятностью, так как он сбалансированный), у кубика 6 граней (число очков от 1 до 6, которые обычно обозначаются точками), это значит, что в задаче общее число исходов: n=6. Событию благоприятствуют только исходы, при которых выпадает грань с четными очками 2,4 и 6, у кубика таких граней: m=3. Теперь можем определить искомую вероятность игральной кости: P=3/6=1/2=0.5.

Задача 2. Брошен один раз игральный кубик. Какова вероятность, что выпадет не менее 5 очков?

Решается такая задача по аналогии с примером, указанным выше. При бросании игрального кубика общее число равновозможных исходов равно: n=6, а удовлетворяют условие задачи (выпало не менее 5 очков, то есть выпало 5 или 6 очков) только 2 исхода, значит m=2. Далее находим нужную вероятность: P=2/6=1/3=0.333.

Две игральные кости, вероятность.

При решении задач с бросанием 2-х игральных костей, очень удобно пользоваться специальной таблицей выпадения очков. На ней по горизонтали откладывается число очков, выпавших на первой кости, а по вертикали - число очков, которое выпало на второй кости. Заготовка имеет такой вид:

Но возникает вопрос, что же будет в пустых ячейках таблицы? Это зависит от задачи, которую потребуется решить. Если в задаче речь идет о сумме очков, тогда туда записывается сумма, а если про разность - значит записывается разность и так далее.

Задача 3. Брошены одновременно 2 игральные кости. Какова вероятность выпадения суммы менее 5 очков?

Для начала необходимо разобраться какое будет общее число исходов эксперимента. Все было очевидно при бросании одной кости 6 граней кубика - 6 исходов эксперимента. Но когда уже две кости, то возможные исходы можно представить как упорядоченные пары чисел вида (x, y), где х показывает сколько на первой кости выпало очков (от 1 до 6), а у - сколько выпало очков на второй кости (от 1 до 6). Всего таких числовых пар будет: n=6*6=36 (в таблице исходов им как раз соответствуют 36 ячеек).

Теперь можно заполнить таблицу, для этого в каждую ячейку заносится число суммы очков, которые выпали на первой и второй кости. Заполненная таблица выглядит так:

Благодаря таблице определим число исходов, которые благоприятствуют событию " выпадет в сумме менее 5 очков". Произведем подсчет числа ячеек, значение суммы в которых будет меньше числа 5 (это 2, 3 и 4). Такие ячейки для удобства закрашиваем, их будет m=6:

Учитывая данные таблицы, вероятность игральной кости равняется: P=6/36=1/6.

Задача 4. Было брошено две игральные кости. Определить вероятность того, что произведение числа очков будет делиться на 3.

Для решения задачи составим таблицу произведений очков, которые выпали на первой и на второй кости. В ней сразу же выделим числа кратные 3:

Записываем общее число исходов эксперимента n=36 (рассуждения такие же как в предыдущей задаче) и число благоприятствующих исходов (число ячеек, которые закрашены в таблице) m=20. Вероятность события равняется: P=20/36=5/9.

Задача 5. Дважды брошена игральная кость. Какова вероятность, что на первой и второй кости разность числа очков будет равна от 2 до 5?

Чтобы определить вероятность игральной кости запишем таблицу разностей очков и выделим в ней те ячейки, значение разности в которых будет между 2 и 5:

Число благоприятствующих исходов (число ячеек, закрашенных в таблице) равно m=10, общее число равновозможных элементарных исходов будет n=36. Определит вероятность события: P=10/36=5/18.

В случае простого события и при бросании 2-х костей, требуется построить таблицу, затем в ней выделить нужные ячейки и их число поделить на 36, это и будет считаться вероятностью.

Затем провел такой же эксперимент с тремя игральными костями. На листе бумаги я записал в столбик цифры от 3 до 18. Это суммы, которые могут выпадать при бросании трех игральных костей. Я сделал 400 бросков. Подсчитал получившийся результат и занес его в таблицу. (Приложение 3 и 4) Чаще выпадают суммы 10 и 11.

Я провел еще один эксперимент уже с четырьмя игральными костями. В столбике были записаны цифры от 4 до 24. Это суммы, которые могут выпадать при бросании четырех игральных костей. Я опять сделал 400 бросков. Подсчитал получившийся результат и занес его в таблицу. (Приложение 5 и 6) Чаще выпадает сумма 14.

Затем я решил сделать математические расчеты. Составил таблицу на две игральные кости, заполнил ее. (Приложение 7) У меня получился результат – чаще выпадает сумма семь. (Приложение 8). Шесть раз из тридцати шести случаев. Такие же математические расчеты я сделал сначала для трех игральных костей. (Приложение 9) Чаще выпадают суммы 10 и 11. Это по 27 случаев из 216. А реже всего выпадает - 3 и 18, всего по 1 случаю из 216. (Приложение 10) А затем для четырех игральных костей. (Приложение 11) Случаев всего 1296. Чаще всего выпадает сумма 14, это 146 случаев из 1296. А реже всего выпадает - 4 и 24, всего по 1 случаю из 1296. (Приложение 12)

Я нашел описание фокусов с игральными костями. Меня удивила простота и оригинальность некоторых фокусов. Принятый порядок расположения разметки на сторонах игральных костей лежит в основе многих фокусов с игральными костями. И я попробовал несколько фокусов проделать. У меня получилось. Но для успешного их проведения необходимо быстро и хорошо считать.

Фокус – это искусный трюк, основанный на обмане зрения при помощи ловких и быстрых приемов. От зрителей фокус всегда скрыт наполовину: они знают, что существует тайна, но представляют ее себе как нечто нереальное, непостижимое. Математические фокусы являются своеобразной демонстрацией математических закономерностей.

Успех каждого фокуса зависит от хорошей подготовки и тренировки, от легкости исполнения каждого номера, точного расчета, умелого владения приемами, необходимыми для проведения фокуса. Такие фокусы производят большое впечатление на зрителей и увлекают их.

Фокус 1. «Угадывание суммы»

Показывающий поворачивается спиной к зрителям, а в это время кто-нибудь из них бросает на стол три кости. Затем зрителя просят сложить три выпавших числа, взять любую кость и прибавить число на нижней грани к только что полученной сумме. Потом снова бросить эту же кость и выпавшее число опять прибавить к сумме. Показывающий обращает внимание зрителей на то, что ему никоем образом не может быть известно, какую из трех костей бросили дважды, затем собирает кости, встряхивает их в руке и тут же правильно называет конечную сумму.

Объяснение. Прежде чем собрать кости, показывающий складывает числа, обращенные к вверху. Добавив к полученной сумме, семерку, он находит конечную сумму.

Этот фокус опирается на свойство суммы чисел на противоположных гранях – она всегда равна семи.

Глава 2. Секрет игральных костей

2.1. Рассчитываем результат

Для того чтобы выяснить какая сумма выпадает чаще при бросании двух, трех, четырех и т. д. игральных костей я провел несколько экспериментов.

Перед началом работы составил таблицу для того, что бы вносить данные. В столбик записаны цифры от 2 до 12. Это суммы, которые могут выпадать при бросании двух игральных костей. На гладкую поверхность стола, чтобы не было посторонних помех, начал бросать кости. Каждую попытку отмечал напротив цифры выпавшей суммы – вертикальной черточкой.

Эксперимент 1:

1) Беру две игральные кости и стакан.

Эксперимент повторяю 400 раз.

Эксперимент помог выяснить какая, сумма выпадает чаще при бросании двух игральных костей. (Приложение 1 и 2)

Эксперимент 2 я провел с тремя игральными костями, для того чтобы выяснить, а какая сумма будет выпадать чаще теперь.

Эксперимент 2:

1) Беру три игральные кости и стакан.

2) Встряхиваю стакан с игральными костями.

3) Бросаю игральные кости на стол.

4) Подсчитываю сумму и отмечаю в таблице.

Эксперимент повторяю 400 раз.

Эксперимент помог выяснить какая, сумма выпадает чаще при бросании трех игральных костей. (Приложение 3 и 4)

Эксперимент помог мне убедиться в том, что при бросании трех игральных костей, выпавшая сумма иная, нежели, с двумя костями.

Эксперимент 3 я провел уже с четырьмя игральными костями, чтобы увидеть динамику изменений.

Перед началом работы опять составил таблицу для того, что бы вносить данные.

Эксперимент 3:

1) Беру четыре игральные кости и стакан.

2) Встряхиваю стакан с игральными костями.

3) Бросаю игральные кости на стол.

4) Подсчитываю сумму и отмечаю в таблице.

Эксперимент повторяю 400 раз.

Эксперимент помог мне убедиться в том, что при бросании четырех игральных костей, сумма, которая выпадает, опять другая. (Приложение 5 и 6)

Рассмотрев результаты экспериментов, мне стало понятно, почему чаще выпадают суммы находящиеся ближе к середине таблицы. Ведь сумма чисел на противоположных гранях всегда равна семи. Поэтому при бросании костей, больше вероятность, что выпадет сумма близкая к этой середине.

2.2. Сравниваем результаты

Сравнив результаты экспериментов с игральными костями (Приложения 1 - 6) и результаты математических расчетов (Приложения 7 - 12) я заметил, что чаще выпадает сумма, находящаяся ближе к середине. Поэтому я нашел среднее арифметическое суммы чисел на гранях игральной кости. (1+2+3+4+5+6) : 6 = 3,5. Получилось число 3,5. Затем я умножил это число на количество игральных костей. Если взять две игральные кости, то произведение 3,5 · 2 = 7. Число семь является тем числом, которое чаще выпадает при бросании двух игральных костей. Если взять три игральные кости, то получим 3,5 · 3 = 10,5. А так как число должно быть целым, то берутся два соседних числа. Это числа 10 и 11, они выпадают чаще при бросании трех игральных костей. Для любого количества игральных костей, рассчитать число, чаще выпадающее, можно по формуле 3,5 · n , (где n - число игральных костей). Причем, если n нечетное число, то берутся два соседних числа, для определения числа чаще выпадающего при бросании игральных костей.

Я рассмотрел библейский рисунок и нашел несоответствие. На двух игральных костях неправильно нанесены разметки. Так как сумма чисел на противоположных гранях должна быть равна семи. А на одной из игральных костей на верхней грани изображено - три, а на боковой - четыре, хотя четыре должно быть на нижней гране. На другой игральной кости, на верхней грани - пять, а на боковой - два. А возможно это потому, что в той местности была принята другая разметка на игральных костях.

Заключение

В своей работе я узнал секрет игральных костей. Этот секрет лежит на поверхности самих игральных костей. Секрет в расположении разметки. Сумма чисел на противоположных гранях всегда равна семи. С помощью экспериментов и математических расчетов я нашел сумму, которая выпадает чаще при бросании игральных костей, и которая зависит от числа игральных костей. Эту сумму можно записать в виде формулы 3,5 · n , где n число игральных костей. При изучении этой темы я узнал, что игральные кости возникли около 3000 лет до нашей эры. Места, где находили археологи самые древние предметы для игры – это Египет, Иран, Ирак и Индия. Узнал о многообразии форм и видов игральных костей. А так же, где используются игральные кости и свойства, которыми они обладают. Я совсем не рассматривал тему решения задач. Просто теория вероятности для меня пока сложная. Но надеюсь к ней еще вернуться.

Многие великие математики в разные времена решали задачи с игральными костями. Но мне не удалось найти автора формулы для нахождения наибольшей суммы при бросании игральных костей. Возможно, я недостаточно долго искал. Но я продолжу поиски. Мне интересно узнать, кто первый вывел эту формулу.

Список литературы

1. Азарьев энциклопедический словарь [Электронный ресурс] http://www. slovarus. ru/?di=72219

2. , Суворова о вероятности в играх. Введение в теорию вероятностей для учащихся 8-11 классов. – Ярославль: Академия развития, 2006. –192 с.

3. , Фрибус задачи. – М.: Просвещение, 1994. – 128 с.

4. Википедия свободная энциклопедия [Электронный ресурс] https://ru. wikipedia. org/wiki/Игральная_кость

5. Игорный бизнес. Пер. с англ. и фр. /НВЦ "Библиомаркет"; Ред.-сост. . - М. 1994. - 208 с.

6. Кости, зары, кубики [Электронный ресурс] http://www. /ru/articles/igralnye_kosti-34

7. Лютикас о теории вероятностей. – М.: Просвещение, 1983. – 127 с.

8. Никифоровский математики Бернулли. – М.: Наука, 1984. – 180 с.

9. За страницами учебника алгебры. Кн. для учащихся 7-9 кл. общеобразоват. Учреждений. – М.: Просвещение, 1999. – 237 с.

10. 100 великих ученых. – М.: Вече, 2000. – 592 с.

11. Толковый словарь иностранных слов [Электронный ресурс] http:///search

12. Толковый словарь Ушакова [Электронный ресурс] http://www. /3/193/772800.html

13. Шень А. Вероятность: примеры и задачи. - М.: Издательство МЦНМО, 2008. – 64 с.

14. Яковлева задачи с игральными костями при изучении элементов теории вероятностей [Электронный ресурс] http://festival.1september. ru/articles/517883/

15. Яковлева и забавные фокусы с игральными костями [Электронный ресурс] http://festival.1september. ru/articles/624782/

Приложение 1. Результаты бросков 2 игральных костей

Приложение 2. Результаты бросков 2 игральных костей

Статьи по теме: