Как расставить 8 ферзей на шахматной доске. Задачу о N ферзях признали NP-полной задачей

КУРСОВАЯ РАБОТА

«Решение задачи о 8 ферзях»

Харьков 2007

Цель работы: разработать программу, которая бы наглядно продемонстрировала варианты размещения ферзей на шахматной доске, удовлетворяя правилам задачи.

Метод исследования: изучение литературы, составление и отладка программ на компьютере, проверка решений.

Программа размещения ферзей на практике может применяться в в образовательных целях. Также ее можно использовать для изучения математической модели поставленной задачи. Ведь задача особенно интересна, при увеличении размера шахматной доски.

Задача звучит следующим образом:

«Какими способами можно расставить на доске восемь ферзей так, чтобы они не угрожали друг другу, т.е. никакие два не стояли на одной вертикали, горизонтали и диагонали и сколько таких способов?»

Задача о восьми ферзях


Очевидно, больше восьми мирных ферзей (как и ладей) на обычной доске расставить невозможно. Найти какое-нибудь расположение восьми ферзей, не угрожающих друг другу, легко (на рисунке представлены четыре искомые расстановки). Значительно труднее подсчитать общее число расстановок и вывести их, в чем, собственно, и состоит задача.

Любопытно, что многие авторы ошибочно приписывали эту задачу и ее решение самому К. Гауссу. На самом деле, она была впервые поставлена в 1848 г. немецким шахматистом М. Беццелем. Доктор Ф. Наук нашел 60 решений и опубликовал их в газете «Illustrierte Zeitung» от 1 июня 1850 г. Лишь после этого Гаусс заинтересовался задачей и нашел 72 решения, которые он сообщил в письме к своему другу астроному Шумахеру от 2 сентября 1850 г. Полный же набор решений, состоящий из 92 позиций, получил все тот же Ф. Наук. Он привел их в упомянутой газете от 21 сентября 1850 г. Эта хронология установлена известным немецким исследователем математических развлечений В. Аренсом.

Строгое доказательство того, что 92 решения исчерпывают все возможности, было получено лишь в 1874 г. английским математиком Д. Глэшером (при помощи теории определителей). Забегая вперед, отметим, что существенных решений (не совпадающих при отражениях и поворотах доски) имеется только двенадцать.

Известно много способов организовать эффективный поиск расположения восьми мирных ферзей (методы Пермантье, Ла-Ное, Гюнтера, Глэшера, Лакьера и др.). Эти способы описаны в многочисленной литературе по занимательной математике. В наш век ЭВМ задача такого сорта не вызвала бы столь живой интерес. Ведь достаточно составить несложную программу, и уже через несколько минут после ее введения в машину все 92 необходимые позиции будут выданы на печать.

Из каждого решения задачи о ферзях можно получить ряд других при помощи поворотов (вращений) доски на 90, 180 и 270°, а также при ее зеркальном отражении относительно линий, разделяющих доску пополам. Например, из расстановки, показанной на рис. а, при повороте доски на 90° по часовой стрелке мы получаем расстановку на рис. в, а при отражении доски относительно линии, разделяющей королевский и ферзевый фланги, – на рис. г. При помощи других поворотов и отражений доски можно получить еще пять решений.

Итак, указанные операции с шахматной доской позволяют из одного расположения мирных ферзей получить, вообще говоря, семь новых. Доказано, что в общем случае на доске nхn (при n > 1) для любой расстановки n мирных ферзей возможны три ситуации:

1) при одном отражении доски возникает новая расстановка ферзей, а при поворотах и других отражениях новых решений не получается;

2) новое решение возникает при повороте доски на 90°, а ее отражения дают еще две расстановки;

3) три поворота доски и четыре отражения приводят к семи различным расстановкам (а если считать и исходную, то всего имеем восемь позиций).

В случае 1) исходное решение называется дважды симметрическим, в случае 2) – симметрическим, а в случае 3) – простым. Для обычной доски каждое решение является либо простым, либо симметрическим, а дважды симметрических не существует.

Набор расстановок восьми мирных ферзей называется основным, если, во-первых, эти расстановки не переходят друг в друга при поворотах и отражениях доски, и, во-вторых, любая другая расстановка получается из какой-нибудь основной при помощи данных преобразований доски. Доказано, что всякий основной набор решений задачи содержит ровно 12 расстановок. Вот один из таких наборов:

1) см. рис. а;

2) см. рис. б;

3) a4, b1, c5, d8, e6, f3, g7, h2;

4) a4, b2, c5, d8, e6, f1, g3, h7;

5) a4, b2, c7, d3, e6, f8, g1, h5;

6) a4, b2, c7, d3, e6, f8, g5, h1;

7) a3, b5, c2, d8, e6, f4, g7, h1;

8) a4, b1, c5, d8, e2, f7, g3, h6;

9) a4, b7, c3, d8, e2, f5, g1, h6;

10) a6, b4, c2, d8, e5, f7, g1, h3;

11) a4, b8, c1, d5, e7, f2, g6, h3;

12) a4, b2, c7, d5, e1, f8, g6, h3.

Остальные 80 расстановок получаются из этих двенадцати при помощи поворотов и отражений доски. Основная расстановка на рис. б является симметрической, другие одиннадцать основных расстановок – простыми. Итак, всего на доске имеем 11·8+1·4=92 расстановки восьми ферзей, не угрожающих друг другу.

Отметим несколько интересных свойств расстановок мирных ферзей. Симметрическая расстановка на рис. б как ей и положено, обладает внешней симметрией. Она характеризуется также тем, что центральная часть доски (квадрат 4х4) не занята ферзями. Свободны здесь и обе главные диагонали доски (этим свойством обладает и восьмая основная расстановка). В первой расстановке (рис. а) никакие три ферзя не находятся на одной прямой, проведенной через центры полей (имеются в виду не только вертикали, горизонтали и диагонали доски, но и прямые с другими углами наклона).

Всякое решение задачи о восьми ферзях можно записать как набор (t1, t2, ј, t8), представляющий собой перестановку чисел 1, 2, ј, 8. Здесь ti – номер горизонтали, на которой стоит ферзь i-й вертикали. Так как ферзи не стоят на одной горизонтали, то все числа ti различны, а поскольку ферзи не стоят и на одной диагонали, то для любых i, j (i < j Ј 8) имеем: |tj-ti| № j-i.

Запишем числа 1, 2, ј, 8 сначала по возрастанию, а затем по убыванию. После этого сложим числа каждой из этих двух перестановок с числами произвольной перестановки восьми чисел, например такой – (3, 7, 2, 8, 5, 1, 4, 6): 1, 2, 3, 4, 5, 6, 7, 8

3, 7, 2, 8, 5, 1, 4, 6

4,9, 8, 7, 6, 5, 4, 3, 2, 1

3, 7, 2, 8, 5, 1, 4, 6

11,14,8,13,9,4, 6, 7.

Полученные суммы образуют два набора: (4, 9, 5, 12, 10, 7, 11, 14) и (11, 14, 8, 13, 9, 4, 6, 7). Рассмотрим следующую задачу.

Какие перестановки чисел от 1 до 8 дают в результате указанной операции сложения два таких набора, в каждом из которых все элементы различны?

Задача о восьми ферзях привлекла внимание Гаусса именно в связи с этой чисто арифметической задачей. Оказывается, между решениями этих двух задач существует взаимно однозначное соответствие. Другими словами, каждая расстановка восьми ферзей, не угрожающих друг другу, дает решение арифметической задачи, и наоборот. Для выбранной перестановки оба набора состоят из различных чисел, и это не случайно – она соответствует первой основной расстановке (см. рис. а).

Нетрудно видеть, что при поворотах и отражениях доски одни решения получаются из других при помощи простых арифметических операций над координатами полей, занятых ферзями. Анализ этих операций позволяет обнаружить дополнительные свойства решений, которые мы не станем обсуждать.

Задача об n ферзях. На шахматной доске nхn расставить n ферзей так, чтобы они не угрожали друг другу.

На доске 1х1 один ферзь ставится на одно-единственное поле, и решение существует. На доске 2х2 один ферзь, где бы ни стоял, нападает на три других поля, и второго ферзя поставить некуда. На доске 3х3 умещаются только два мирных ферзя. Итак, для досок 2х2 и 3х3 задача не имеет решения. Эти два случая представляют собой исключение. Для всех n > 3 на доске nхn можно расставить n не угрожающих друг другу ферзей.

На доске 4ґ4 существует одна основная расстановка, причем дважды симметрическая: a2, b4, c1, d3, т.е. всего имеется два решения. На доске 5ґ5 основных расстановок две: 1) a2, b4, c1, d3, e5; 2) a2, b5, c3, d1, e4. Общее число расстановок равно десяти, причем из них можно выбрать пять таких, при наложении которых друг на друга 25 ферзей заполняют все поля доски 5х5.

Заметим, что в общем случае n расстановок (решений задачи) могут заполнить при наложении всю доску nхn только при тех n, которые не кратны двум и трем. Из этого, в частности, следует, что для обычной доски подобрать восемь расстановок, накрывающих все 64 поля доски, невозможно.

Обобщая алгебраическое свойство решений задачи о восьми ферзях, получаем, что расстановка n ферзей (t1, t2, ј, tn) на доске nґn является искомой, если для любых i, j (i < j Ј n) имеет место: |tj-ti| № j-i. Таким образом, задача об n ферзях сводится к чисто математической задаче о нахождении перестановки чисел 1, 2, ј, n, удовлетворяющей указанному условию. Известно много решений этой задачи, некоторые из них опубликованы в серьезных математических журналах. Один из методов расстановки n ферзей, не угрожающих друг другу на произвольной доске nґn (n і 5), можно найти в книге «Математика на шахматной доске».

Описание алгоритма и структуры программы:

В данной программе реализован рекурсивный метод решения задачи о 8 ферзях.

У нас имеется функция (int put_queen (int x)), которая ставит очередного ферзя на поле и вызывает саму себя для, того чтобы поставить следующего, если очередного ферзя поставить нельзя, то она возвращает управление в функцию, из которой была вызвана, а та в свою очередь пробует поставить своего ферзя в другое место, и опять рекурсивно вызвать себя. Когда функция ставит последнего ферзя, то результат расстановки выводится пользователю.

В самом начале мы вызываем функцию с параметром х равным нулю (нумерация начинается с 0), что означает, что она должна поставить первого ферзя. Когда эта функция возвращает управление главной функции, то это означает, что все варианты найдены.

Для сохранения положения ферзей используется массив из 8 элементов целочисленного типа (int queens). Порядок элемента в этом массиве означает номер ферзя и его x’овую координату, то есть столбец, а его значение – y’овую координату, или строку. Мы используем то свойство, что на одном столбце не могут находиться несколько ферзей.

Для определения возможности поставить текущего ферзя мы проверяем в цикле в координатной форме не находится ли он на одной из диагоналей («главной» и «побочной») или строке с каждым из ферзей поставленных ранее.

В качестве вывода результата используется 2 способа:

1. Формирование и отображение html страницы с результатами. Этот способ требует прав создания и изменения файлов в каталоге, где она находится. Но он более красивый чем второй, тем более что он отображается в стандартном браузере Internet Explorer, в котором результаты можно распечатать сохранить куда необходимо и др.

2. Вывод результатов в консоль программы. Этот способ используется если создать html файл не удалось. Он менее нагляден, и удобен, но работает всегда.

Для реализации первого способа используется процедура print_htm(), а для реализации второй – print_console()

Используется также переменная count для хранения текущего количества найденных результатов.

Процедуры init() и close() используются для подготовки к работе основного кода программы и для корректного ее завершения соответственно.

Для начала работы с программой надо запустить фаил 8Q.exe после чего запуститься программа. Если программе удалось создать htm файл, то она записывает варианты решения в него и запускает Интернет браузер Internet Explorer с открытой страницей, сгенерированной программой и содержащей результат работы, либо если файл создать не удалось, то выведет в консоль ошибку и результаты работы будут выводиться непосредственно в консоль. После вывода очередного результата пользователю будет предложено нажать любую кнопку для продолжения работы программы и вывода следующего результата. Когда все результаты будут выведены на экран, программа сообщит об этом и после нажатия на любую кнопку завершится.

программа размещение ферзь шахматный

Текст программы

#include

#include

#include

#include

using namespace std;

int queens, count;

void print_console()

cout <<»–=============–\n»;

cout <<» Version #» <

cout <<» –===========–\n»;

cout <<» a b c d e f g h \n»;

for (int i=0; i<8; i++)

cout <<» +-+-+-+-+-+-+-+-+ \n»;

cout <<» " <<8-i;

for (int j=0; j<8; j++)

if (j!=queens[i]) cout << "|»; else cout << "|W»;

cout << "|» <<8-i <<»\n»;

cout <<» +-+-+-+-+-+-+-+-+ \n»;

cout <<» a b c d e f g h \n\n Press any key to continue…\n»;

void print_htm()

\n»); else fprintf (result, «\n»);

fprintf (result, «

\n»);

for (int i=0; i<8; i++)

fprintf (result, «

\n»);

for (int j=0; j<8; j++)

if (! ((i+j)%2)) fprintf (result, «

\n»);

fprintf (result, «

\n»);

fprintf (result, «

\n», count);

fprintf (result, «

»); else fprintf (result, «»);

if (j!=queens[i]) fprintf (result, « »); else fprintf (result, «W»);

fprintf (result, «

Вариант №%d


\n»);

if (count % 2) fprintf (result, «»); else fprintf (result, «»);

int put_queen (int x)

if (opened) print_htm(); else print_console();

for (int y=0; y<8; y++)

for (int q=0; q

if (((queens[q] – y)==(q-x)) || (queens[q]==y) || ((queens[q]+q)==(x+y))) can_put=0;

put_queen (x+1);

if (! (result = fopen («queens.htm», «w»)))

printf («Error creating result file. Result will be displayed in console.\n»);

} else opened=1;

if (opened) fprintf (result, «\

Курсовая работа по програмированию\n\

\n\

\n\

Задача:


\n\

Какими способами можно расставить на доске восемь ферзей так, чтобы они не угрожали друг другу, т.е. никакие два не стояли на одной вертикали, горизонтали и диагонали?

\

Решения (всего 92):


\n\

\n»);

cout << «That"s all. Enjoy…»;

fprintf_s (result, «

*Эта страница была сгенерирована курсовой программой студента гр. КИ-06–7 Парченко П.В.»);

WinExec («explorer \ «queens.htm\"», SW_SHOW);

Глава 8. Задача о восьми ферзях

Задача о восьми ферзях, как и задача о ходе коня, является одной из самых знаменитых математических задач на шахматной доске. Если задачей о коне занимался Леонард Эйлер, то задача о ферзях привлекла внимание другого великого математика - Карла Гаусса.

Сколькими способами можно расставить на шахматной доске восемь ферзей так, чтобы они не угрожали друг другу, т. е. никакие два не стояли на одной вертикали, горизонтали и диагонали?

Найти ту или иную расстановку ферзей, удовлетворяющую условию задачи, не так трудно (четыре решения приведены на рис. 43). Значительно труднее подсчитать общее число существующих расстановок; собственно, в этом и состоит задача о восьми ферзях. Ясно, что как и в случае ладей, больше восьми не атакующих друг друга ферзей на шахматной доске расставить невозможно. И, соответственно, на доске n×n необходимым образом нельзя расставить более n ферзей (в общем виде задача будет рассмотрена несколько ниже).


Рис. 43. Восемь ферзей, не угрожающих двуг другу на шахматной доске

Любопытно, что многие авторы ошибочно приписывают задачу о восьми ферзях и ее решение самому Гауссу. На самом деле первым ее сформулировал в 1848 г. немецкий шахматист М. Беццель. Доктор Ф. Наук (слепой от рождения) нашел 60 решений и опубликовал их в газете «Illustrierte Zeitung» от 1 июня 1850 г. Лишь после этого Гаусс увлекся задачей и нашел 72 решения, которые сообщил в письме к своему другу астроному Шумахеру от 2 сентября 1850 г. Полный же набор решений, состоящий из 92 позиций, получил все тот же Ф. Наук (он привел их в упомянутой газете от 21 сентября 1850 г.). Эта хронология установлена известным немецким исследователем математических развлечений В. Аренсом, который в своих книгах немало места уделил рассматриваемой задаче.

Доказательство того, что 92 решения исчерпывают все возможности, было получено лишь в 1874 г. английским математиком Д. Глэшером (при помощи теории определителей).

В принципе, расставляя на доске восемь ферзей всевозможными способами, мы в конце концов найдем все устраивающие нас расстановки. Однако этот путь чересчур долог и скучен. Можно ограничиться только решениями соответствующей задачи о ладьях и отобрать среди них такие, в которых никакая пара ладей не стоит па одной диагонали. Но и в этом случае перебор довольно велик (понадобятся, как мы знаем, более 40000 попыток). Таким образом, при решении задачи «вручную» (а именно так поступали в прошлом веке) вынужденный перебор расстановок должен быть хорошо продуман. Известно много способов организовать более или менее разумный поиск искомых расположений ферзей (методы Пермантье, Ла-Ное, Гюнтера, Глэшера, Лакьера и др.). Эти способы описаны в многочисленной литературе по занимательной математике (в основном в прошлом столетии и начале нынешнего). В наш век вычислительных машин задача такого сорта не смогла бы вызвать столь живой интерес. Ведь достаточно составить несложную программу для ЭВМ - и уже через несколько минут после ее введения в машину все 92 необходимые позиции будут выданы на печать.

Из каждого решения задачи о ферзях можно получить ряд других при помощи поворотов (вращений) доски вокруг центра на 90, 180 и 270° по часовой стрелке (поворот на 360° приводит к исходной позиции). Из данной расстановки ферзей новую можно получить также зеркальным отражением доски относительно одной из пунктирных прямых на рис. 43 (1-я позиция) . Например, из первой расстановки на этом рисунке при повороте доски на 90° мы получаем третью, а при отражении относительно линии, разделяющей королевский и ферзевый фланги, - четвертую. При помощи других поворотов и отражений можно получить еще пять решений.

Итак, при поворотах и отражениях доски из одной расстановки ферзей получаются, вообще говоря, семь новых. Доказано, что в общем случае на доске n×n (при n > 1) для любой расстановки n ферзей, не угрожающих друг другу, возможны лишь три ситуации: а) при одном отражении доски получается новая расстановка, а повороты и другие отражения ничего нового не дают; б) новое решение получается при повороте доски на 90°, а отражения дают еще две расстановки; в) все три поворота и четыре отражения доски приводят к восьми несовпадающим расстановкам (включая исходную).

В случае а) исходное решение называется дважды симметрическим, в случае б) - симметрическим, а в случае в) - простым. Для обычной доски каждое решение является либо простым, либо симметрическим, а дважды симметрических не существует. Алгебраическую интерпретацию решений каждого класса можно найти у Окунева.

Множество (набор) расстановок восьми ферзей называется основным,если они, во-первых, не переходят друг в друга при поворотах и отражениях доски, и, во-вторых, любая другая расстановка получается из какой-нибудь основной при помощи этих преобразований. Известно, что всякий набор основных решений задачи содержит ровно 12 позиций (расстановок восьми ферзей). Приведем одип из таких наборов:

1) a4, b1, c5, d8, e6, f3, g7, h2;
2) a4, b2, c5, d8, e6, f1, g3, h7;
3) a4, b2, c7, d3, e6, f8, g1, b5;
4) a4, b2, c7, d3, e6, f8, g5, h1;
5) a3, b5, c2, d8, e6, f4, g7, h1;
6) a3, b7, c2, d8, e5, f1, g4, h6;
7) a4, b7, c3, d8, e2, f5, g1. h6;
8) a6, b4, c2, d8, e5, f7, g1. h3;
9) a4, b8, c1, d5, e7, f2. g6, h3;
10) a4, b2, c7, d5. e1. f8. g6, h3;
11) 1-я позиция на рис. 43;
12) 2-я позиция на рис. 43.

Остальные 80 позиций получаются из этих двенадцати в результате поворотов и отражений доски. Первые 11 расстановок являются простыми, и лишь последняя - симметрической. Таким образом, всего на доске существует 11×8 + 1×4 = 92 расстановки восьми ферзей, не угрожающих друг другу.

Рассматривая основные расстановки, можно обнаружить те или иные интересные особенности их. Например, легко заметить внешнюю симметрию последней расстановки (2-я позиция на рис. 43). Это основное решение, единственное в своем роде, характеризуется также тем, что только у него центральная часть доски (квадрат 4×4) свободна от ферзей. Еще одно его свойство состоит в том, что ферзями не занята главная диагональ доски a1 - h8 (этим свойством обладает и первое основное решение).

Первая расстановка на рис. 43 любопытна тем, что здесь никакие три ферзя не стоят на одной прямой, проведенной через центры полей (имеются в виду не только вертикали, горизонтали и диагонали доски* но и прямые с другими углами наклона).

Всякое решение задачи можно записать, как набор (t 1 , t 2 , … t 8), представляющий собой перестановку чисел 1, 2, …, 8. Здесь ti - номер горизонтали, на которой стоит ферзь i-й вертикали. Так как никакие два ферзя не находятся на одной горизонтали, то все t x различны, а поскольку ферзи не стоят и на одной диагонали, то для любых i, j (i < j ≤ 8) имеем: |t j - t i | ≠ j - i.

Числовая запись расстановок ферзей иногда бывает очень удобной. Например, для нахождения расстановок при фиксированном расположении ферзя на a1 достаточно из всех 92 позиций, записанных в числовой форме, отобрать такие, у которых первая координата равна 1. Если фиксировано положение ферзя на d3, то следует выделить позиции, у которых на четвертом месте стоит число 3, и т. д.

Запишем числа 1, 2, …, 8 сначала по возрастанию, а потом по убыванию. После этого сложим числа каждой из этих двух перестановок с числами произвольной перестановки, например (3, 7, 2, 8, 5, 1, 4, 6):

+ 1, 2, 3, 4, 5, 6, 7, 8 + 8, 7, 6, 5, 4, 3, 2, 1
3, 7, 2, 8, 5, 1, 4, 6 3, 7, 2, 8, 5, 1, 4, 6
4, 9, 5, 12, 10, 7, 11, 14 11, 14, 8, 13, 9, 4, 6, 7

Полученные суммы образуют два набора чисел: (4, 9, 5, 12, 10, 7, 11, 14) и (11, 14, 8, 13, 9, 4, 6, 7). Возникает следующая задача.

Какие перестановки чисел 1, 2,…, 8 дают в результате указанной операции сложения два таких набора, в каждом из которых все числа различны?

Задача о восьми ферзях заинтересовала Гаусса именно в связи с этой чисто арифметической задачей. Оказывается, между решениями задачи о ферзях и решениями описанной арифметической задачи существует взаимно однозначное соответствие. Другими словами, каждая расстановка восьми ферзей, не угрожающих друг другу, дает решение арифметической задачи - и наоборот. Для выбранной перестановки оба набора состоят из различных чисел, и это не случайно - она соответствует первой позиции на рис. 43.

Нетрудно видеть, что при поворотах n отражениях доски одни решения получаются из других при помощи простых арифметических операций над координатами полей, занятых ферзями. Исследование этих операций позволяет обнаружить дополнительные свойства решений (некоторые из которых приведены у Окунева).

Задача о n ферзях. На шахматной доске n×n расставить n ферзей так, чтобы они не угрожали друг другу.

На доске 1×1 один ферзь ставится на единственное поле, и решение существует. На доске 2×2 один ферзь, где бы он ни стоял, угрожает всем полям доски, и второго ферзя поставить некуда. При любой расстановке трех ферзей на доске 3×3 хотя бы два из них угрожают друг другу. Итак, при n, равном 2 или 3, задача не имеет решений.

Что касается случаев n > 3, то известно, что на любой доске n×n можно расставить n ферзей так. чтобы они не угрожали друг другу. Доказательству этого далеко не очевидного факта посвящено много статей, в том числе в серьезных математических изданиях.

На доске 4×4 существует единственная основная расстановка, причем дважды симметрическая (a2, b4, c1, d3), т. е. всего здесь имеется два решения. На доске 5×5 основных расстановок две: 1) a2, b4, c1, d3, e5; 2) a2, b5, c3, d1, e4; всего же имеется десять искомых позиций. Интересно, что из них можно выбрать пять таких, при наложении которых друг на друга 25 ферзей заполнят все поля доски 5×5. Аналогичное наложение в общем случае возможно только при тех и, которые не делятся ни на 2, ни на 3. Из этого, в частности, следует, что для обычной доски подобрать восемь решепий, для которых ферзи заполняют всю доску, невозможно.

Обобщая указанное выше алгебраическое свойство решений задачи о восьми ферзях, получаем, что расстановка (t 1 , t 2 , … t n) n ферзей на доске n×n является искомой, если для любых i, j (i < j < n): |t j - t i | ≠ j - i. Здесь по-прежнему t i - номер горизонтали, на которой стоит ферзь i-й вертикали, а набор t 1 , …, t n есть перестановка чисел 1, …, п. Таким образом, для решения задачи в общем случае достаточно найти перестановку чисел 1, …, n, удовлетворяющую указанному условию.

Сейчас мы опишем одну возможную схему искомого расположения n ферзей на доске n×n при всех n > 5. Доказательство того, что в полученных расстановках наше условие выполняется, можно найти, например, у Окунева или у Ягломов.

Рассмотрим последовательно ряд случаев. Пусть сначала n четно, причем n = 6k или n = 6k + 4. Половину всех ферзей поставим на первых n/2 вертикалях ходом коня, начиная со второй горизонтали и передвигаясь каждый раз на 2 поля вверх и на 1 вправо. Вторую половину поставим на оставшихся n/2 вертикалях тем же способом, но начиная с первой горизонтали. Для доски 6×6 (n = 6k, k = 1) это дает такую расстановку ферзей: a2, b4, c6, d1, e3, f5 (решение, представленное на рис. 45 для n = 10, получается иным образом).

При n = 6k + 2 предыдущий прием уже не проходит, и ферзей приходится расставлять более «хитрым» способом. Расположим их ходом коня со второй вертикали по

(n/2 - 2)-ю, начиная с третьей горизонтали, и далее с

(n/2 + 3)-й вертикали по (n - 1)-ю, начиная с шестой горизонтали. В результате свободными останутся шесть вертикалей и шесть горизонталей доски, на которых шесть ферзей должны занять поля с такими координатами: (1, n - 3), (n/2 - 1, 1); (n/2, n - 1), (n/2 + 1, 2), (n/2 + 2, n), (n, 4). При n = 14 (n = 6k + 2, k = 2) получаем расстановку на рис. 44. Кстати, на обычной доске 8×8 (8 = 6k + 2, к = 1) расстановка восьми ферзей указанным способом совпадает все с тем же замечательным решением на рис. 43 (2-я позиция), но заметить закономерность расположения ферзей здесь вряд ли возможно.

Нам осталось рассмотреть задачу для нечетных значений n. Чтобы получить решение в этом случае, достаточно заметить, что в предложенных нами расстановках на «четных» досках главная диагональ (идущая из левого нижнего угла в правый верхний) оставалась свободной. Учитывая это обстоятельство, искомую расстановку n ферзей на доске n×n (при нечетном n) можно получить следующим образом. На вертикалях и горизонталях этой доски с номерами от 1 до (n - 1) расставим (n - 1) ферзя так, как это делается на доске (n - 1)×(n - 1) (n - 1 четно!), а затем n-то ферзя расположим в правом верхнем углу доски. Описанным способом можно получить первую расстановку ферзей на доске 5×5 из указанной расстановки на доске 4×4, а из расстановки ферзей на доске 6×6 имеем следующую для n = 7: a2, b4, c6, d1, e3, f5, g7.

Рис. 44. Задача об n ферзях


Эта задача - одна из очень интересных шахматных головоломок.

Условие такое: можно ли поставить восемь ферзей на пустой доске таким образом, чтобы ни один из них не "атаковал" другого, т.е. так, чтобы ни какие два ферзя не стояли на одном и том же столбце, или на одной и той же строке, или на одной и той же диагонали шахматной доски. Решение этой задачи, как вы понимаете, существует, причем не одно. На рис.1 я показал один из возможных вариантов расстановки ферзей.

Ф
Ф
Ф
Ф
Ф
Ф
Ф
Ф
Рисунок 1

Решение этой задачи на компьютере не представляет большой сложности. В принципе, можно тупо перебрать все возможные варианты расстановки ферзей на доске, а затем определить подходящие. Написать такую программу не сложно, но возникает вопрос: "Сколько существует вариантов и сколько времени нужно для их перебора?" Честно говоря, считать точное количество вариантов мне было лень, но, судя по всему, ждать придется долго.

Поэтому, нужно каким-то образом определить на какую клетку ставить следующего ферзя. Например, ставить несколько ферзей в одну линию бессмысленно (это противоречит условию). Если попробовать решить задача вручную, то становится понятно, что расставить 6 - 7 ферзей не сложно. Но после этого свободных клеток (которые не "бьются" ни одним из ферзей) нет. Следовательно, ферзей нужно расставлять так, чтобы они били как можно меньше клеток. Очень хорошо если несколько разных ферзей "бьют" одни и те же клетки, но при этом не "бьют" друг друга.

Подобные алгоритмы называются эвристическими и очень часто используются при разработке компьютерных игр. Эти алгоритмы обычно содержат условия, на основании которых компьютер может просчитать последствия того или иного хода (в данном случае, это количество клеток, которые будет "бить" ферзь), и выбрать лучший из них. Другие примеры программ, использующих эвристические алгоритмы вы можете посмотреть на сайте http://www.vova-prog.narod.ru/.

Для решения задачи нам понадобиться массив accessibility. В нем мы будем хранить информацию о том, свободна данная клетка или нет. Таким образом, для того чтобы определить сколько клеток будет "бить" ферзь из заданной, нам нужно перемещать ферзя по всем возможным направлениям (их 8) и считать свободные клетки. Для перемещения ферзя удобно использовать два одномерных массива, элементы которых указывают на сколько клеток нужно сместить ферзя при движении в выбранном направлении. Я определил их таким образом:

Const int vert = {0,-1,-1,-1,0,1,1,1}; const int hor = {1,1,0,-1,-1,-1,0,1};

Нулевой элемент соответствует перемещения вправо. Первый - по диагонали вправо и вверх, и т.д.

Для перемещения ферзя, например, на одну клетку вниз можно записать

X += hor; y += vert;

Далее нужно выбрать клетку, которой соответствует наименьшее количество "выбитых" свободных клеток. Если таких клеток несколько, то выбираем одну из них случайным образом и ставим на неё ферзя (при этом нужно отметить в массиве accessibility, что соответствующие клетки заняты). Процесс повторяется до тех пор, пока не будут установлены все 8 ферзей.

На этом примере очень хорошо виден главный недостаток эвристического программирования - он не всегда позволяет решить задачу. Программа, работающая по данному алгоритму, находит решение примерно один раз из десяти. Этот результат, конечно, можно улучшить, если, например, выполнять анализ на несколько ходов вперед. Но, в любом случае, такая программа не сможет гарантировать решение, мы только увеличим вероятность его нахождения.

Пару месяцев назад появилась с анализом классической задачи о расстановке ферзей на шахматной доске (см. детали и историю ниже). Задача невероятно известная и вся уже рассмотрена под микроскопом, поэтому было удивительно, что появилось что-то действительно новое.





(здесь максимальное число ферзей, причем на месте крестика можно поставить белого, а на месте точке черного - но не обоих сразу; взято из статьи)

Модели и сложность задач

Пришло время собственно обсудить: а как это вообще все решать и насколько быстро это вообще можно сделать?

Линейный поиск для классической задачи

Самый интересный момент, что даже специалисты иногда путаются и думают, что для решения N-ферзей нужен комбинаторный поиск и думают, что сложность задачи выше P. Про то, что такое P и NP, когда-то уже писал на Хабре: и . Однако, задача решается без перебора вариантов! Т.е., для доски любого размера можно всегда расставить ферзей один за одним лесенкой:





Отсюда вывод, для N = 1 и N > 3 решение всегда есть (см. алго), а для N = 2 или N = 3
всегда нет (тривиально следует из доски). Это значит, что задача разрешимости для N ферзей (где нужно сказать есть решение или нет) решается тривиально за константное время (ну ок, конструктивно за линейное - расставить/проверить).


Самое время перепроверить прочитанное, читаем типичный заголовок "задачу о N ферзях признали NP-полной задачей" - у вас замироточили глаза?

Как считать число решений на практике

Вот тут начинается самое интересное: у количества решений задачи о расстановке ферзей даже есть своё имя - "последовательность A000170 ". На этом хорошие новости заканчиваются. Сложность задачи: выше NP и P#, на практике это означает, что оптимальное решение - это скачать данные последовательности в словарь и возвращать нужное число. Так как для N=27 оно уже считалось на параллельном кластере сколько там недель.


Решение : выписываем табличку и по n, возвращаем а(n)
n a(n)
1: 1
2: 0
3: 0
4: 2
5: 10
6: 4
7: 40
8: 92
9: 352
10: 724

21: 314666222712
22: 2691008701644
23: 24233937684440
24: 227514171973736
25: 2207893435808352
26 22317699616364044
27: 234907967154122528


Однако, если у вас какая-то хитрая разновидность задачи и все-таки нужно посчитать решения (а их количество неизвестно и раньше их никто не посчитал), то лучший вариант прототипа обсуждается чуть ниже.

Дополнение до N и Answer Set Programming

Тут начинается самое интересное: в чём же состоит новый результат статьи? Задача о дополнении до N ферзей - NP-полна ! (Интересно, что про NP-полноту дополнения латинского квадрата было известно ещё в 1984-ом году.)


Что это означает на практике? Самый простой способ решишь эту задачу (или вдруг, если нам нужно её вариацию) - использовать SAT. Однако, мне больше нравится следующая аналогия:


SAT - это ассемблер для комбинаторных NP-задач, а Answer Set Programming (ASP) - это С++ (у ASP тоже загадочная русская душа: он временами запутан и непредсказуем для непосвященных; кстати, теория, лежащая в основе современного ASP , была придумана в 1988ом году Михаилом Гельфондом и Владимиром Лифшицем, работавших тогда в университетах Техаса и Стэнфорда соответственно).


Если говорить упрощенно: ASP - это декларативный язык программирования ограничений (constraints в англоязычной литературе) с синтаксисом Prolog. То есть мы записываем, каким ограничениям должно удовлетворять решение, а система сводит всё к варианту SAT и находит нам решение.


Детали решения здесь не столь важны, и Answer Set Programming достоин отдельного поста (который лежит у меня в черновике уже неприлично долго): поэтому разберем концептуальные моменты


% domain row(1..n). column(1..n). % alldifferent 1 { queen(X,Y) : column(Y) } 1:- row(X). 1 { queen(X,Y) : row(X) } 1:- column(Y). % remove conflicting answers:- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 == Y2. :- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 + X1 == Y2 + X2. :- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1 - X1 == Y2 - X2.

Строка 1 { queen(X,Y) : column(Y) } 1:- row(X). - называется choice rule, и она определяет, что является допустимым пространством поиска.


Последние три строки называются integrity constraints: и они определяют каким ограничениям должно удовлетворять решение: не может быть ферзя в одном и том же ряду, не может быть ферзя в одной и той же колонке (опущено, в силу симметрии) и не может быть ферзя на одной и той же диагонали.


В качестве системы для экспериментов рекомендую Clingo .
И для начала стоит посмотреть их tutorial и попочитать блог на www.hakank.org .


Безусловно, если впервые писать на ASP, то первая модель не выйдет невероятно эффективной и быстрой, но скорее всего будет быстрее перебора с возвратом, написанным на скорую руку. Однако, если понять основные принципы работы системы, ASP может стать "regexp для NP-полных задач".


Проведем простой численный эксперимент с нашей ASP моделью. Я добавил 5 коварных ферзей в модель и запустил поиск решения для N от 1 до 150 и вот, что вышло (запущено на обычном домашнем ноутбуке):



Итого, наша ASP модель примерно в течении минуты может найти решения задачи о дополнении при N <= 150 (в обычном случае). Это показывает, что система отлично подходит для прототипирования моделей сложных комбинаторных задач.

Выводы

  • Новый результат связан не с классической задачей о 8 ферзях, а дополнении обобщенной задачи о ферзях (что интересно, но в целом закономерно);
  • Сложность существенно возрастает, так как, коварно поставив ферзей на доске, можно сбить алгоритм, ставящий ферзей по какой-то фиксированной закономерности;
  • Эффективно посчитать число решений нельзя (ну совсем; пока не случится какой-то ужас и P не сравняется с NP итд);
  • Возможно этот результат повлияет на работу современных SAT систем, так как некоторые эксперты считают, что эта задача в чем-то проще классических NP-полных задач (но это только мнение)
  • Если вам вдруг зачем-то нужно решать подобную задачу - лучше всего воспользуйтесь системами аля Answer Set Programming, специально для этого предназначенных

Одной из отличных задач-головоломок является 8 ферзей на шахматной доске . Эта игра была придумана еще в 1848 году известным шахматистом Базелем Максимом. Если вы хотите заняться саморазвитием и планируете начать с шахмат, то эта задача станет отличным стартом.

Смысл заключается в том, чтобы разместить 8 фигур, а точнее ферзей, так, чтобы ни одна из них не находилась под боем. Стоит напомнить, что ферзь может ходить в любом направлении и на любое количество клеток.

Варианты решения задачи

На сегодняшний день существует 12 решений, однако если применять правила симметрии, то насчитывается целых 92 варианта. Первое решение этой головоломки было опубликовано уже через два года Францом Наке. После него еще большое количество ученых и любителей пытались найти свое собственное решение как поставить 8 ферзей на шахматной доске . Например, всемирно известный математик и физик Гаусс нашел 72 варианта размещения фигур на шахматной доске. Такое количество вариантов было обусловлено интересным подходом – ученый разворачивал доску поочередно на 90, потом на 180 и на 270 градусов. Таким образом, получая новые комбинации.

Расставить 8 ферзей на шахматной доске непросто, однако каждый сможет найти хотя бы одно верное решение практически сразу. Одним из наиболее известных решений является такое расположение фигур:h5, f1,d8,b4,g7,e3,c6,a2. Еще три варианта решения можно наблюдать, если развернуть шахматную доску, подобно решению Гаусса.

В ходе поиска решения этой головоломки вы сможете попрактиковаться в творческом мышлении, потренируете внимание и память, а также разовьете способность логического мышления. Эти навыки пригодятся и помогут в дальнейшем находить нетривиальные решения поставленных задач, не используя стандартные алгоритмы. Применение в поиске решения размышлений и характерных логических конструкций может стать вашей отличительной чертой именно благодаря решению таких головоломок.

Статьи по теме: