Как расставить 8 ферзей на шахматной. Задачу о N ферзях признали NP-полной задачей

Первый вариант головоломки 1850 года, когда два ферзя заранее установлены на доску, а игрок должен расставить остальных ферзей (два решения задачи см. под катом)

Задача о N ферзях состоит в том, чтобы разместить N ферзей на доске размером N×N таким образом, чтобы ни один ферзь не находился под боем другого, при этом на доске заранее установлены несколько ферзей. То есть в итоге никакие два ферзя не должны находиться на одной линии или диагонали. Впервые задачку сформулировали в 1848 году, а в 1850 году придумали вариант головоломки, когда некоторое количество ферзей заранее поставлено на доску, а игрок должен расставить остальных, если это возможно.

Исследователи из Сент-Эндрюсского университета (Шотландия) опубликовали , в которой доказывают, что задача о N ферзях является не только #P-полной задачей, но также NP-полной задачей. Более того, Математический институт Клэя (США) готов заплатить миллион долларов любому, кто сможет оптимизировать решение этой задачи как задачи на доказательство P=NP.

Как известно, в теории сложности #P является классом проблем, решением которых является количество успешных, то есть, завершающихся в допускающих состояниях, путей вычислений для некой недетерминированной машины Тьюринга, работающей полиномиальное время. Вычислительные задачи класса #P (counting problems) связаны с соответствующими задачами разрешимости (decision problems) класса NP.

Учёные отмечают, что эта задача может быть самой простой среди NP-полных задач, чтобы объяснить суть этих проблем любому человеку, который знает правила игры в шахматы. У этой задачи вообще очень интересная история. В своё время она привлекла внимание Гаусса, который даже сделал небольшую ошибку в её решении (на доске 8×8 он сообщил о 76 решениях, но потом сам признал четыре из них ошибочными, так что остались только 72, а позже Гаусс установил все 92 решения для доски 8×8).

Обобщение задачи для доски N×N привлекло внимание многих математиков. За последние полвека вышло несколько десятков научных работ, посвящённых этой проблеме. Как минимум шесть из них цитируются более 400 раз на Google Scholar: это Golomb & Baumert, 1965; Bitner & Reingold, 1975; Mackworth & Freuder, 1985; Minton, Johnston, Philips, & Laird, 1992; Selman, Levesque & Mitchell, 1992; Crawford, Ginsberg, Luks, & Roy, 1996.

Сложность задачи о N ферзях часто неправильно оценивают. Даже в обильно цитируемых работах её часто называют NP-сложной задачей (NP-hard), но она будет таковой только при условии, что P=NP. На самом деле вычислительный вариант задачи, то есть определение количества решений для N ферзей, представляет собой последовательность A000170 из Онлайн-энциклопедии целочисленных последовательностей. Эта последовательность сейчас известна максимум для n=27, где количество решений превышает 2,34×10 17 . Не известно ни одно более эффективное решение проблемы, чем простой перебор. Так, для n=27 в 2016 году использовался масштабный параллельный поиск на FPGA.

В то же время, если компьютер начнёт перебор возможных положений ферзей на доске 1000×1000 клеток, то он загрузится этой задачей навечно. По мнению учёных, если некто найдёт действительно быстрый и эффективный способ решения, то сможет извлечь из этого гораздо бóльшую выгоду, чем один миллион долларов от Математического института Клэя. «Если вы напишете программу, которая может решить проблему действительно быстро, вы могли бы адаптировать её для решения многих важных задач, с которыми мы сталкиваемся ежедневно, - говорит профессор информатики Ян Гент (Ian Gent), один из авторов научной работы. - Среди них тривиальные проблемы, такие как поиск самой большой группы ваших друзей в Facebook, которые не знают друг друга, или очень важные задачи, например, взлом кодов, которые обеспечивают безопасность всех наших онлайн-транзакций».

Но это чисто теоретические измышления. На практике никто пока не приблизился к решению задачи о N ферзях быстрым и эффективным способом. За доказательство, что существует более эффективный способ решения задачи, чем простой перебор всех вариантов, дадут миллион долларов.

КУРСОВАЯ РАБОТА

«Решение задачи о 8 ферзях»

Харьков 2007

Цель работы: разработать программу, которая бы наглядно продемонстрировала варианты размещения ферзей на шахматной доске, удовлетворяя правилам задачи.

Метод исследования: изучение литературы, составление и отладка программ на компьютере, проверка решений.

Программа размещения ферзей на практике может применяться в в образовательных целях. Также ее можно использовать для изучения математической модели поставленной задачи. Ведь задача особенно интересна, при увеличении размера шахматной доски.

Задача звучит следующим образом:

«Какими способами можно расставить на доске восемь ферзей так, чтобы они не угрожали друг другу, т.е. никакие два не стояли на одной вертикали, горизонтали и диагонали и сколько таких способов?»

Задача о восьми ферзях


Очевидно, больше восьми мирных ферзей (как и ладей) на обычной доске расставить невозможно. Найти какое-нибудь расположение восьми ферзей, не угрожающих друг другу, легко (на рисунке представлены четыре искомые расстановки). Значительно труднее подсчитать общее число расстановок и вывести их, в чем, собственно, и состоит задача.

Любопытно, что многие авторы ошибочно приписывали эту задачу и ее решение самому К. Гауссу. На самом деле, она была впервые поставлена в 1848 г. немецким шахматистом М. Беццелем. Доктор Ф. Наук нашел 60 решений и опубликовал их в газете «Illustrierte Zeitung» от 1 июня 1850 г. Лишь после этого Гаусс заинтересовался задачей и нашел 72 решения, которые он сообщил в письме к своему другу астроному Шумахеру от 2 сентября 1850 г. Полный же набор решений, состоящий из 92 позиций, получил все тот же Ф. Наук. Он привел их в упомянутой газете от 21 сентября 1850 г. Эта хронология установлена известным немецким исследователем математических развлечений В. Аренсом.

Строгое доказательство того, что 92 решения исчерпывают все возможности, было получено лишь в 1874 г. английским математиком Д. Глэшером (при помощи теории определителей). Забегая вперед, отметим, что существенных решений (не совпадающих при отражениях и поворотах доски) имеется только двенадцать.

Известно много способов организовать эффективный поиск расположения восьми мирных ферзей (методы Пермантье, Ла-Ное, Гюнтера, Глэшера, Лакьера и др.). Эти способы описаны в многочисленной литературе по занимательной математике. В наш век ЭВМ задача такого сорта не вызвала бы столь живой интерес. Ведь достаточно составить несложную программу, и уже через несколько минут после ее введения в машину все 92 необходимые позиции будут выданы на печать.

Из каждого решения задачи о ферзях можно получить ряд других при помощи поворотов (вращений) доски на 90, 180 и 270°, а также при ее зеркальном отражении относительно линий, разделяющих доску пополам. Например, из расстановки, показанной на рис. а, при повороте доски на 90° по часовой стрелке мы получаем расстановку на рис. в, а при отражении доски относительно линии, разделяющей королевский и ферзевый фланги, – на рис. г. При помощи других поворотов и отражений доски можно получить еще пять решений.

Итак, указанные операции с шахматной доской позволяют из одного расположения мирных ферзей получить, вообще говоря, семь новых. Доказано, что в общем случае на доске nхn (при n > 1) для любой расстановки n мирных ферзей возможны три ситуации:

1) при одном отражении доски возникает новая расстановка ферзей, а при поворотах и других отражениях новых решений не получается;

2) новое решение возникает при повороте доски на 90°, а ее отражения дают еще две расстановки;

3) три поворота доски и четыре отражения приводят к семи различным расстановкам (а если считать и исходную, то всего имеем восемь позиций).

В случае 1) исходное решение называется дважды симметрическим, в случае 2) – симметрическим, а в случае 3) – простым. Для обычной доски каждое решение является либо простым, либо симметрическим, а дважды симметрических не существует.

Набор расстановок восьми мирных ферзей называется основным, если, во-первых, эти расстановки не переходят друг в друга при поворотах и отражениях доски, и, во-вторых, любая другая расстановка получается из какой-нибудь основной при помощи данных преобразований доски. Доказано, что всякий основной набор решений задачи содержит ровно 12 расстановок. Вот один из таких наборов:

1) см. рис. а;

2) см. рис. б;

3) a4, b1, c5, d8, e6, f3, g7, h2;

4) a4, b2, c5, d8, e6, f1, g3, h7;

5) a4, b2, c7, d3, e6, f8, g1, h5;

6) a4, b2, c7, d3, e6, f8, g5, h1;

7) a3, b5, c2, d8, e6, f4, g7, h1;

8) a4, b1, c5, d8, e2, f7, g3, h6;

9) a4, b7, c3, d8, e2, f5, g1, h6;

10) a6, b4, c2, d8, e5, f7, g1, h3;

11) a4, b8, c1, d5, e7, f2, g6, h3;

12) a4, b2, c7, d5, e1, f8, g6, h3.

Остальные 80 расстановок получаются из этих двенадцати при помощи поворотов и отражений доски. Основная расстановка на рис. б является симметрической, другие одиннадцать основных расстановок – простыми. Итак, всего на доске имеем 11·8+1·4=92 расстановки восьми ферзей, не угрожающих друг другу.

Отметим несколько интересных свойств расстановок мирных ферзей. Симметрическая расстановка на рис. б как ей и положено, обладает внешней симметрией. Она характеризуется также тем, что центральная часть доски (квадрат 4х4) не занята ферзями. Свободны здесь и обе главные диагонали доски (этим свойством обладает и восьмая основная расстановка). В первой расстановке (рис. а) никакие три ферзя не находятся на одной прямой, проведенной через центры полей (имеются в виду не только вертикали, горизонтали и диагонали доски, но и прямые с другими углами наклона).

Всякое решение задачи о восьми ферзях можно записать как набор (t1, t2, ј, t8), представляющий собой перестановку чисел 1, 2, ј, 8. Здесь ti – номер горизонтали, на которой стоит ферзь i-й вертикали. Так как ферзи не стоят на одной горизонтали, то все числа ti различны, а поскольку ферзи не стоят и на одной диагонали, то для любых i, j (i < j Ј 8) имеем: |tj-ti| № j-i.

Запишем числа 1, 2, ј, 8 сначала по возрастанию, а затем по убыванию. После этого сложим числа каждой из этих двух перестановок с числами произвольной перестановки восьми чисел, например такой – (3, 7, 2, 8, 5, 1, 4, 6): 1, 2, 3, 4, 5, 6, 7, 8

3, 7, 2, 8, 5, 1, 4, 6

4,9, 8, 7, 6, 5, 4, 3, 2, 1

3, 7, 2, 8, 5, 1, 4, 6

11,14,8,13,9,4, 6, 7.

Полученные суммы образуют два набора: (4, 9, 5, 12, 10, 7, 11, 14) и (11, 14, 8, 13, 9, 4, 6, 7). Рассмотрим следующую задачу.

Какие перестановки чисел от 1 до 8 дают в результате указанной операции сложения два таких набора, в каждом из которых все элементы различны?

Задача о восьми ферзях привлекла внимание Гаусса именно в связи с этой чисто арифметической задачей. Оказывается, между решениями этих двух задач существует взаимно однозначное соответствие. Другими словами, каждая расстановка восьми ферзей, не угрожающих друг другу, дает решение арифметической задачи, и наоборот. Для выбранной перестановки оба набора состоят из различных чисел, и это не случайно – она соответствует первой основной расстановке (см. рис. а).

Нетрудно видеть, что при поворотах и отражениях доски одни решения получаются из других при помощи простых арифметических операций над координатами полей, занятых ферзями. Анализ этих операций позволяет обнаружить дополнительные свойства решений, которые мы не станем обсуждать.

Задача об n ферзях. На шахматной доске nхn расставить n ферзей так, чтобы они не угрожали друг другу.

На доске 1х1 один ферзь ставится на одно-единственное поле, и решение существует. На доске 2х2 один ферзь, где бы ни стоял, нападает на три других поля, и второго ферзя поставить некуда. На доске 3х3 умещаются только два мирных ферзя. Итак, для досок 2х2 и 3х3 задача не имеет решения. Эти два случая представляют собой исключение. Для всех n > 3 на доске nхn можно расставить n не угрожающих друг другу ферзей.

На доске 4ґ4 существует одна основная расстановка, причем дважды симметрическая: a2, b4, c1, d3, т.е. всего имеется два решения. На доске 5ґ5 основных расстановок две: 1) a2, b4, c1, d3, e5; 2) a2, b5, c3, d1, e4. Общее число расстановок равно десяти, причем из них можно выбрать пять таких, при наложении которых друг на друга 25 ферзей заполняют все поля доски 5х5.

Заметим, что в общем случае n расстановок (решений задачи) могут заполнить при наложении всю доску nхn только при тех n, которые не кратны двум и трем. Из этого, в частности, следует, что для обычной доски подобрать восемь расстановок, накрывающих все 64 поля доски, невозможно.

Обобщая алгебраическое свойство решений задачи о восьми ферзях, получаем, что расстановка n ферзей (t1, t2, ј, tn) на доске nґn является искомой, если для любых i, j (i < j Ј n) имеет место: |tj-ti| № j-i. Таким образом, задача об n ферзях сводится к чисто математической задаче о нахождении перестановки чисел 1, 2, ј, n, удовлетворяющей указанному условию. Известно много решений этой задачи, некоторые из них опубликованы в серьезных математических журналах. Один из методов расстановки n ферзей, не угрожающих друг другу на произвольной доске nґn (n і 5), можно найти в книге «Математика на шахматной доске».

Описание алгоритма и структуры программы:

В данной программе реализован рекурсивный метод решения задачи о 8 ферзях.

У нас имеется функция (int put_queen (int x)), которая ставит очередного ферзя на поле и вызывает саму себя для, того чтобы поставить следующего, если очередного ферзя поставить нельзя, то она возвращает управление в функцию, из которой была вызвана, а та в свою очередь пробует поставить своего ферзя в другое место, и опять рекурсивно вызвать себя. Когда функция ставит последнего ферзя, то результат расстановки выводится пользователю.

В самом начале мы вызываем функцию с параметром х равным нулю (нумерация начинается с 0), что означает, что она должна поставить первого ферзя. Когда эта функция возвращает управление главной функции, то это означает, что все варианты найдены.

Для сохранения положения ферзей используется массив из 8 элементов целочисленного типа (int queens). Порядок элемента в этом массиве означает номер ферзя и его x’овую координату, то есть столбец, а его значение – y’овую координату, или строку. Мы используем то свойство, что на одном столбце не могут находиться несколько ферзей.

Для определения возможности поставить текущего ферзя мы проверяем в цикле в координатной форме не находится ли он на одной из диагоналей («главной» и «побочной») или строке с каждым из ферзей поставленных ранее.

В качестве вывода результата используется 2 способа:

1. Формирование и отображение html страницы с результатами. Этот способ требует прав создания и изменения файлов в каталоге, где она находится. Но он более красивый чем второй, тем более что он отображается в стандартном браузере Internet Explorer, в котором результаты можно распечатать сохранить куда необходимо и др.

2. Вывод результатов в консоль программы. Этот способ используется если создать html файл не удалось. Он менее нагляден, и удобен, но работает всегда.

Для реализации первого способа используется процедура print_htm(), а для реализации второй – print_console()

Используется также переменная count для хранения текущего количества найденных результатов.

Процедуры init() и close() используются для подготовки к работе основного кода программы и для корректного ее завершения соответственно.

Для начала работы с программой надо запустить фаил 8Q.exe после чего запуститься программа. Если программе удалось создать htm файл, то она записывает варианты решения в него и запускает Интернет браузер Internet Explorer с открытой страницей, сгенерированной программой и содержащей результат работы, либо если файл создать не удалось, то выведет в консоль ошибку и результаты работы будут выводиться непосредственно в консоль. После вывода очередного результата пользователю будет предложено нажать любую кнопку для продолжения работы программы и вывода следующего результата. Когда все результаты будут выведены на экран, программа сообщит об этом и после нажатия на любую кнопку завершится.

программа размещение ферзь шахматный

Текст программы

#include

#include

#include

#include

using namespace std;

int queens, count;

void print_console()

cout <<»–=============–\n»;

cout <<» Version #» <

cout <<» –===========–\n»;

cout <<» a b c d e f g h \n»;

for (int i=0; i<8; i++)

cout <<» +-+-+-+-+-+-+-+-+ \n»;

cout <<» " <<8-i;

for (int j=0; j<8; j++)

if (j!=queens[i]) cout << "|»; else cout << "|W»;

cout << "|» <<8-i <<»\n»;

cout <<» +-+-+-+-+-+-+-+-+ \n»;

cout <<» a b c d e f g h \n\n Press any key to continue…\n»;

void print_htm()

\n»); else fprintf (result, «\n»);

fprintf (result, «

\n»);

for (int i=0; i<8; i++)

fprintf (result, «

\n»);

for (int j=0; j<8; j++)

if (! ((i+j)%2)) fprintf (result, «

\n»);

fprintf (result, «

\n»);

fprintf (result, «

\n», count);

fprintf (result, «

»); else fprintf (result, «»);

if (j!=queens[i]) fprintf (result, « »); else fprintf (result, «W»);

fprintf (result, «

Вариант №%d


\n»);

if (count % 2) fprintf (result, «»); else fprintf (result, «»);

int put_queen (int x)

if (opened) print_htm(); else print_console();

for (int y=0; y<8; y++)

for (int q=0; q

if (((queens[q] – y)==(q-x)) || (queens[q]==y) || ((queens[q]+q)==(x+y))) can_put=0;

put_queen (x+1);

if (! (result = fopen («queens.htm», «w»)))

printf («Error creating result file. Result will be displayed in console.\n»);

} else opened=1;

if (opened) fprintf (result, «\

Курсовая работа по програмированию\n\

\n\

\n\

Задача:


\n\

Какими способами можно расставить на доске восемь ферзей так, чтобы они не угрожали друг другу, т.е. никакие два не стояли на одной вертикали, горизонтали и диагонали?

\

Решения (всего 92):


\n\

\n»);

cout << «That"s all. Enjoy…»;

fprintf_s (result, «

*Эта страница была сгенерирована курсовой программой студента гр. КИ-06–7 Парченко П.В.»);

WinExec («explorer \ «queens.htm\"», SW_SHOW);

Одной из отличных задач-головоломок является 8 ферзей на шахматной доске . Эта игра была придумана еще в 1848 году известным шахматистом Базелем Максимом. Если вы хотите заняться саморазвитием и планируете начать с шахмат, то эта задача станет отличным стартом.

Смысл заключается в том, чтобы разместить 8 фигур, а точнее ферзей, так, чтобы ни одна из них не находилась под боем. Стоит напомнить, что ферзь может ходить в любом направлении и на любое количество клеток.

Варианты решения задачи

На сегодняшний день существует 12 решений, однако если применять правила симметрии, то насчитывается целых 92 варианта. Первое решение этой головоломки было опубликовано уже через два года Францом Наке. После него еще большое количество ученых и любителей пытались найти свое собственное решение как поставить 8 ферзей на шахматной доске . Например, всемирно известный математик и физик Гаусс нашел 72 варианта размещения фигур на шахматной доске. Такое количество вариантов было обусловлено интересным подходом – ученый разворачивал доску поочередно на 90, потом на 180 и на 270 градусов. Таким образом, получая новые комбинации.

Расставить 8 ферзей на шахматной доске непросто, однако каждый сможет найти хотя бы одно верное решение практически сразу. Одним из наиболее известных решений является такое расположение фигур:h5, f1,d8,b4,g7,e3,c6,a2. Еще три варианта решения можно наблюдать, если развернуть шахматную доску, подобно решению Гаусса.

В ходе поиска решения этой головоломки вы сможете попрактиковаться в творческом мышлении, потренируете внимание и память, а также разовьете способность логического мышления. Эти навыки пригодятся и помогут в дальнейшем находить нетривиальные решения поставленных задач, не используя стандартные алгоритмы. Применение в поиске решения размышлений и характерных логических конструкций может стать вашей отличительной чертой именно благодаря решению таких головоломок.

Эта задача - одна из очень интересных шахматных головоломок.

Условие такое: можно ли поставить восемь ферзей на пустой доске таким образом, чтобы ни один из них не "атаковал" другого, т.е. так, чтобы ни какие два ферзя не стояли на одном и том же столбце, или на одной и той же строке, или на одной и той же диагонали шахматной доски. Решение этой задачи, как вы понимаете, существует, причем не одно. На рис.1 я показал один из возможных вариантов расстановки ферзей.

Ф
Ф
Ф
Ф
Ф
Ф
Ф
Ф
Рисунок 1

Решение этой задачи на компьютере не представляет большой сложности. В принципе, можно тупо перебрать все возможные варианты расстановки ферзей на доске, а затем определить подходящие. Написать такую программу не сложно, но возникает вопрос: "Сколько существует вариантов и сколько времени нужно для их перебора?" Честно говоря, считать точное количество вариантов мне было лень, но, судя по всему, ждать придется долго.

Поэтому, нужно каким-то образом определить на какую клетку ставить следующего ферзя. Например, ставить несколько ферзей в одну линию бессмысленно (это противоречит условию). Если попробовать решить задача вручную, то становится понятно, что расставить 6 - 7 ферзей не сложно. Но после этого свободных клеток (которые не "бьются" ни одним из ферзей) нет. Следовательно, ферзей нужно расставлять так, чтобы они били как можно меньше клеток. Очень хорошо если несколько разных ферзей "бьют" одни и те же клетки, но при этом не "бьют" друг друга.

Подобные алгоритмы называются эвристическими и очень часто используются при разработке компьютерных игр. Эти алгоритмы обычно содержат условия, на основании которых компьютер может просчитать последствия того или иного хода (в данном случае, это количество клеток, которые будет "бить" ферзь), и выбрать лучший из них. Другие примеры программ, использующих эвристические алгоритмы вы можете посмотреть на сайте http://www.vova-prog.narod.ru/.

Для решения задачи нам понадобиться массив accessibility. В нем мы будем хранить информацию о том, свободна данная клетка или нет. Таким образом, для того чтобы определить сколько клеток будет "бить" ферзь из заданной, нам нужно перемещать ферзя по всем возможным направлениям (их 8) и считать свободные клетки. Для перемещения ферзя удобно использовать два одномерных массива, элементы которых указывают на сколько клеток нужно сместить ферзя при движении в выбранном направлении. Я определил их таким образом:

Const int vert = {0,-1,-1,-1,0,1,1,1}; const int hor = {1,1,0,-1,-1,-1,0,1};

Нулевой элемент соответствует перемещения вправо. Первый - по диагонали вправо и вверх, и т.д.

Для перемещения ферзя, например, на одну клетку вниз можно записать

X += hor; y += vert;

Далее нужно выбрать клетку, которой соответствует наименьшее количество "выбитых" свободных клеток. Если таких клеток несколько, то выбираем одну из них случайным образом и ставим на неё ферзя (при этом нужно отметить в массиве accessibility, что соответствующие клетки заняты). Процесс повторяется до тех пор, пока не будут установлены все 8 ферзей.

На этом примере очень хорошо виден главный недостаток эвристического программирования - он не всегда позволяет решить задачу. Программа, работающая по данному алгоритму, находит решение примерно один раз из десяти. Этот результат, конечно, можно улучшить, если, например, выполнять анализ на несколько ходов вперед. Но, в любом случае, такая программа не сможет гарантировать решение, мы только увеличим вероятность его нахождения.

Рассмотрим такую любимую задачу на понимание алгоритмов, как «Задача о восьми ферзях». Классическое определение: «расставить на шахматной доске 8 ферзей так, чтобы ни один из них не бил другого». Ок, задачка очень популярная на разных собеседованиях, и Википедия нам сразу дает решение на моем любимом Python"е .

И это наверняка правильное решение с точки зрения обычного человека, но абсолютно бессмысленное с точки зрения хакера, и вот я вам расскажу почему:

Проанализируем алгоритм: используется классический поиск с возвратом, мы представляем область решений в виде графа, каждая вершина которого - это такое положение ферзя, в котором он не находится под боем, и не бьет уже расставленных на доске ферзей, т.е. нам надо только собрать все «ветки» состоящей ровно из восьми вершин. В качестве метода поиска этих «веток» автор нам предлагает классический алгоритм поиска в ширину, т.е. порядок обхода графа будет выглядеть так:

И как только алгоритм отработает мы получим все возможные решения.

Так в чем же проблема? В нашем случае, для доски 8х8, мы получим 92 различные решения, а представим, что, как это часто бывает в реальных задачах, мы не знаем размера доски. Если доска будет 25x25, как в тай сёги , тогда количество решений уже будет 275,986,683,743,434.

Таблица, зависимость количества решений от размера доски:

Что это будет значить для нашего скрипта? А то, что он уйдет в очень долгий поиск, и так-как все решения ему придется держать в уме, то уже через 15 мин Python будет съедать 300 мегабайтов памяти. Кто обладает мощным процессором и большим объемом оперативной памяти может проверить, завершиться ли этот процесс вообще...

А все, что нам требовалось при решении подобной задачи - подобрать правильный алгоритм обхода графа, которым в нашем случае оказался бы обычный поиск в глубину, тогда обход графа происходил бы в таком порядке:

А код был бы на много проще, и даже бы через 15 мин скрипт съедал бы ровно столько же памяти, как и через секунду после запуска. И вот бы как его реализация выглядела бы на Python"е:

Def rc_queens(n_col, width, sol): if len(sol) == width: print sol else: for n_row in range(width): if (safe_queen(n_row, n_col, sol)): rc_queens(n_col+1, width, sol+) def safe_queen(new_row, new_col, sol): for col in range(len(sol)): if (sol == new_row or abs(col - new_col) == abs(sol - new_row)): return 0 return 1 if __name__ == "__main__": for n in range(8): rc_queens(1, 8, [n])
P.S. Это всего лишь взгляд на проблему со стороны хакера, может кто-то предложит взгляд со стороны «theoretical computer science»?

Статьи по теме: