Открытое бета тестирование doom. Знакомство c бета-версией DOOM (2016): впечатление от игрового процесса и тесты производительности. Результаты тестов: сравнение производительности

Как работают биологические часы организма. За что дали Нобелевскую премию по медицине в 2017 году

Джефри Холл, Майкл Розбаш и Майкл Янг сайт

Трое американских ученых разделили высшую научную награду за исследования механизма работы внутренних часов в живых организмах

Жизнь на Земле приспособлена к вращению нашей планеты вокруг Солнца. Уже много лет мы знаем о существовании внутри живых организмов, включая людей, биологических часов, которые помогают предвидеть суточный ритм и приспособиться к нему. Но как именно работают эти часы? Американские генетики и хронобиологи смогли заглянуть внутрь этого механизма и пролить свет на его скрытую работу. Их открытия объясняют, как растения, животные и люди приспосабливают свои биологические ритмы, чтобы синхронизироваться с суточным циклом вращения Земли.

Используя плодовых мух в качестве подопытных организмов, лауреаты Нобелевской премии-2017 выделили ген, который контролирует нормальный суточный ритм у живых существ. Также они показали, как этот ген кодирует белок, который накапливается в клетке ночью и распадается в течение дня, заставляя ее тем самым соблюдать этот ритм. Впоследствии они идентифицировали дополнительные белковые компоненты, управляющие механизмом самоподдерживающихся "часов" внутри клетки. И теперь мы знаем, что биологические часы функционируют по одному и тому же принципу как внутри отдельных клеток, так и внутри многоклеточных организмов, например, людей.

Благодаря исключительной точности наши внутренние часы приспосабливают нашу физиологию к таким разным фазам суток – утру, дню, вечеру и ночи. Эти часы регулируют столь важные функции, как поведение, уровень гормонов, сон, температуру тела и метаболизм. Наше самочувствие страдает, когда происходит рассинхронизация внешней среды и внутренних часов. Пример – так называемый джетлаг, возникающий у путешественников, которые перемещаются из одного часового пояса в другой, а потом еще долго не могут приспособиться к сдвигу дня и ночи. Спят в светлое время суток и не могут уснуть в темное. На сегодня существует также много доказательств того, что хроническое несовпадение между образом жизни и естественными биоритмами повышает риск различных заболеваний.

Наши внутренние часы невозможно обмануть

Эксперимент Жан-Жака д"Ортуа де Майрана Нобелевский комитет

Большинство живых организмов четко адаптируются к суточным изменениям окружающей среды. Одним из первых наличие этой адаптации доказал еще в XVIII веке французский астроном Жан-Жак д"Ортуа де Майран. Он наблюдал за кустом мимозы и обнаружил, что ее листья поворачиваются за солнцем в течение дня и закрываются с закатом. Ученый задался вопросом, что бы случилось, если бы растение оказалось в постоянной темноте? Поставив простой эксперимент, исследователь обнаружил, что, независимо от наличия солнечного света, листья подопытной мимозы продолжают совершать свои привычные суточные движения. Как оказалось, у растений есть свои внутренние часы.

Более поздние исследования доказали, что не только растения, но также животные и люди подчиняются работе биологических часов, которые помогают приспособить нашу физиологию к суточным изменениям. Эта адаптация называется циркадным ритмом. Термин происходит от латинских слов circa – "около" и dies – "день". Но то, как именно работают эти биологические часы, долго оставалось загадкой.

Обнаружение "часового гена"

В 1970-е годы американский физик, биолог и психогенетик Сеймур Бензер вместе со своим учеником Рональдом Конопкой исследовал, можно ли выделить гены, которые контролируют циркадный ритм у плодовых мух. Ученым удалось показать, что мутации в неизвестном им гене нарушают этот ритм у подопытных насекомых. Они назвали его геном периода. Но каким образом этот ген влиял на циркадный ритм?

Лауреаты Нобелевской премии за 2017 год также проводили опыты на плодовых мухах. Их целью было открыть механизм работы внутренних часов. В 1984 г. Джефри Холл и Майкл Розбаш, которые тесно сотрудничали друг с другом в стенах Брандейского университета Бостона, а также Майкл Янг из Университета Рокфеллера в Нью-Йорке успешно изолировали ген периода. Холл и Розбаш затем обнаружили, что белок PER, кодирующийся этим геном, накапливается клетками в течение ночи и разрушается днем. Таким образом, уровень этого белка колеблется в течение 24-часового цикла синхронно с циркадным ритмом. Был обнаружен "маятник" внутренних клеточных часов.

Саморегулирующийся часовой механизм


Упрощенная схема работы в клетке белков, которые регулируют циркадный ритм Нобелевский комитет

Следующая ключевая цель заключалась в том, чтобы понять, как эти циркадные колебания могут возникать и поддерживаться. Холл и Розбаш предположили, что белок PER в течение суточного цикла блокирует активность гена периода. Они полагали, что с помощью ингибирующей петли обратной связи белок PER может периодически препятствовать собственному синтезу и тем самым регулировать свой уровень в непрерывном циклическом ритме.

Для построения этой любопытной модели не хватало лишь нескольких элементов. Чтобы заблокировать активность гена периода, белок PER, производящийся в цитоплазме, должен был бы достичь клеточного ядра, где содержится генетический материал. Опыты Холла и Розбаша показывали, что этот белок действительно накапливается в ядре в ночное время суток. Но как он туда попадает? Ответил на этот вопрос в 1994 году Майкл Янг, который открыл второй ключевой "часовой ген", который кодирует белок TIM, необходимый для соблюдения нормального циркадного ритма. В простой и элегантной работе он показал, что когда ТIМ связан с PER, эти два белка способны проникать в клеточное ядро, где они действительно блокируют работу гена периода, чтобы закрыть ингибирующую петлю обратной связи.

Такой регуляторный механизм объяснил, как возникло это колебание уровней клеточного белка, но так и не закрыл все вопросы. К примеру, необходимо было установить, что контролирует частоту суточных колебаний. Чтобы решить эту задачу, Майкл Янг выделил еще один ген, кодирующий белок DBT, – он задерживает накопление белка PER. Таким образом удалось понять, как это колебание регулируется, чтобы максимально точно совпадать с 24-часовым циклом.

Эти открытия, совершенные сегодняшними лауреатами, лежат в основе ключевых принципов функционирования биологических часов. В дальнейшем были обнаружены и другие молекулярные компоненты этого механизма. Они объясняют стабильность его работы и принцип действия. К примеру, Холл, Розбаш и Янг обнаружили дополнительные белки, необходимые для активации гена периода, а также механизм, с помощью которого дневной свет синхронизирует работу биологических часов.

Влияние суточных ритмов на жизнь человека


Циркадный ритм человека Нобелевский комитет

Биологические часы вовлечены во множество аспектов нашей сложной физиологии. Теперь мы знаем, что все многоклеточные организмы, включая людей, используют схожие механизмы, чтобы контролировать циркадные ритмы. Работа большой части наших генов регулируется биологическими часами, следовательно, тщательно настроенный циркадный ритм адаптирует нашу физиологию к разным фазам суток. Благодаря плодотворной работе трех сегодняшних нобелиантов, циркадная биология превратилась в обширную и динамично развивающуюся область исследований, изучающую влияние суточных ритмов на наше здоровье и благополучие. А мы получили еще одно подтверждение тому, что ночью все же лучше спать, даже если ты закоренелая "сова". Это полезнее для здоровья.

Справка

Джефри Холл – родился в 1945 году в Нью-Йорке, США. Докторскую степень получил в 1971 году в Вашингтонском университете (Сиэтл, Вашингон). До 1973 года занимал должность профессора в Калифорнийском технологическом институте (Пасадена, Калифорния). С 1974 года работает в Брандейском университете (Уолтем, Массачусетс). В 2002 году начал сотрудничество с Университетом штата Мэн.

Майкл Розбаш – родился в 1944 году в Канзас-Сити, США. Защитил докторскую в Массачусетском технологическом институте (Кэмбридж, Массачусетс). Следующие три года был докторантом Эдинбургского университета в Шотландии. С 1974 года работает в Брандейском университете (Уолтем, Массачусетс).

Майкл Янг – родился в 1949 году в Майами, США. Закончил докторантуру в Университете Техаса (Остин, Техас) в 1975 году. До 1977 года проходил постдокторантуру в Стэнфордском университете (Пало-Альто, Калифорния). В 1978 году присоединился к преподавательскому составу Университета Рокфеллера в Нью-Йорке.

Перевод материалов Шведской королевской академии наук.

Практически все жизненно важные процессы в природе проходят по циклу. Самым простым является смена времен года. Каждый год все живое переживает четыре сезона: весну, лето, осень и зиму. Другим примером может послужить цикл полного вращения нашей планеты вокруг солнца. Одно такое вращение длится год. Или же полный оборот Земли вокруг своей оси, образующий сутки.

В нашем организме также происходят определенные циклы. Почему организм человека имеет потребность во сне? Или что способствует его пробуждению? Что такое циркадный ритм? Организм человека подвластен 24-часовому циклу. Самое важное в этом цикле - это смена сна и бодрствования. Этот процесс автоматически регулируется головным мозгом.

Понятие циркадного ритма

Циркадные ритмы — это изменение интенсивности биологических процессов, протекающих в организме человека на протяжении суток. Другими словами, это такие биологические часы внутри организма. Сбивать их ритм нельзя, так как это чревато различными заболеваниями психики и жизненно важных органов.

Циркадные ритмы в норме создают циркадный баланс. То состояние, когда у человека прекрасное самочувствие, называется циркадным балансом.

При циркадном балансе человек чувствует себя физически здоровым, у него прекрасный аппетит, отличное настроение, его организм отдохнувший и полон энергии. Человек находится в своем ритме. Но когда циркадный баланс отсутствует, циркадный ритм нарушен, то это оставляет свой отпечаток на здоровье организма.

Проявление циркадных ритмов

Каждый наверняка замечал за собой, что чувствует себя более работоспособным, энергичным и полным жизненных сил и энергии в одни часы суток и более обессиленным, вялым и сонным - в другие. Это связано именно с За работу биологических часов в человеческом организме несут ответственность около 20 тысяч нейронов в гипоталамусе. До сих пор точно неизвестно, как работают эти «часы». Однако ученые уверены, что для нормального функционирования организма их работа должна быть четкой и слаженной, циркадный всегда должен быть в норме.

В среднем умственная активность человека имеет два пика: 9:00 утра и 21:00 вечера. Физическая сила своего пика достигает в 11:00 утра и 19:00 вечера.

Цикл «сон - бодрствование»

Постоянная смена дня и ночи - это цикл, от которого напрямую зависит состояние человеческого организма, его циркадный ритм. Цикл смены ночи и дня, ответственный за процесс смены сна и бодрствования. Именно от цикла «сон - бодрствование» зависит протекание многих процессов в организме, его нормальное функционирование и трудоспособность.

Недостаточное количество сна может стать причиной снижения падения трудоспособности. В случае отсутствия полноценного здорового сна ухудшаются интеллектуальные функции, нарушаются процессы в организме. Это далеко не все, чем чревато для организма нарушение циркадного ритма сна. Также это чревато ранним старением мозга, психическими нарушениями и даже шизофренией.

Влияние дневного света на циркадные ритмы

Когда солнце уходит за горизонт, падает уровень освещенности. Зрительная система человека посылает сигналы к головному мозгу. Стимулируется выработка такого гормона, как мелатонин. Он способствует снижению активности человека. Мелатонин расслабляет человека, заставляет почувствовать себя сонным.

И наоборот, когда солнце появляется на горизонте, в поступает сигнал о повышении освещенности. Выработка мелатонина идет на снижение. Как последствие - активность человеческого организма повышается.

В регулировке цикла «сон - бодрствование» принимают участие и другие стимулы. Например, принятие душа или ванны, привычный звонок будильника, уход в спальню, принятие горизонтального положения и любые другие привычки.

Рассветы и закаты

Ученые считают, что именно ранний подъем с рассветом и отход ко сну после ухода солнца за горизонт позволит сделать работу биологических часов четкой и слаженной.

Именно по этой причине поздний рассвет и ранний закат зимой нередко приводит к тому, что люди чувствуют себя сонными, вялыми и заторможенными. Это нормальная реакция организма на дневной свет. Биологические часы человека не могут настроиться на нормальную работу. Суточные циркадные ритмы дают сбой, и возникают различные проблемы со здоровьем.

Такое же снижение настроения, падение активности и ощущение бессилия испытывают люди, которые живут в условиях полярной ночи или когда очень длительное время держится пасмурная, дождливая погода.

Хронотипы человека

Циркадные ритмы человека до сих пор исследуются. Ученые предположили, что существует три основных хронотипа организма человека.

К первому хронотипу относят «жаворонков» - людей утреннего типа. Они просыпаются рано, с восходом солнца. Наутро и первую половину дня выпадает пик их бодрости, трудоспособности и жизнерадостности. Вечером «жаворонки» сонливы, они рано ложатся спать.

Ко второму хронотипу относят людей вечернего типа. Называют их «совы». Ведут себя «совы» противоположно «жаворонкам». Спать они ложатся очень поздно и терпеть не могут утренние пробуждения. Утром «совы» сонливы, вялые, работоспособность крайне низкая.

Утренняя заторможенность «сов» может сопровождаться головной болью. Работоспособность у них повышается только во второй половине дня, чаще даже после шести вечера. Бывают случаи, когда пик работоспособности «совы» выпадает на ночь.

Третий хронотип - это люди с колебаниями интенсивности физиологических возможностей на протяжении суток. Их называют «голуби» или, другими словами - аритмики. Такие люди впадают из одной крайности в другую. Могут одинаково эффективно работать как днем, так и вечером.

«Жаворонками», «совами» или «голубями» люди рождаются, или они такими становятся? Ответа на этот вопрос еще не нашли. Однако было проведено много исследований, доказывающих существование взаимосвязи между хронотипом и родом деятельности человека. Например: служащие в большинстве случаев являются «жаворонками». Люди, работающие умственно — «совы». А люди физического труда — «голуби». То есть получается, что человек в силе сам настроить свои биологические часы, приспособиться к своему Главное - не навредить самому себе.

Причины сбоя циркадного ритма

Нарушение циркадных ритмов может происходить по разным причинам. Самые основные и распространенные причины сбоя в работе биологических часов:

  • Работа посменно.
  • Беременность.
  • Длительная поездка, перелет.
  • Употребление медикаментов.
  • Различные изменения в привычном образе жизни.
  • Пересечение других часовых поясов.
  • Синдром совы. Люди с этим хронотипом предпочитают отходить ко сну очень поздно. По этой причине у них возникают трудности с пробуждением утром.
  • Синдром жаворонка. Данный хронотип характеризуется ранним пробуждением. У таких людей возникают трудности тогда, когда есть потребность поработать вечером.
  • При переходе на летнее или зимнее время. У многих людей в этот период наблюдается снижение работоспособности, повышение раздражительности, бессилия, апатии. Причем перевод стрелок на зимнее время переносится легче, чем на летнее.
  • Любителям проводить ночь за компьютером также грозит сбой циркадного ритма.
  • Ночная работа — очень сильный стресс для организма. На первых порах это может не ощущаться, но с каждым днем усталость накапливается, ухудшается сон, падает трудоспособность, возникает апатия, которая может смениться депрессией.
  • Непредвиденные ситуации, когда день и ночь меняются местами.
  • Молодые мамы часто страдают от того, что ее циркадные ритмы не совпадают с ритмами ребенка. Часто у детей основной сон проходит днем, а ночью они спят маленькими отрезками времени. О таких детях говорят, что они перепутали день и ночь. Мама же в таком случае, естественно, выспаться не может. Вот тут и имеет место серьезное нарушение циркадного ритма матери.


Регуляция циркадных ритмов

Человек должен уметь подстроится под любой график, ведь жизнь может предоставить множество сюрпризов, которые могут отобразиться крайне негативно на работе биологических часов. Вот некоторые советы, которые могут помочь поддержать циркадные ритмы человека:

  • Если человеку предстоит перелет, то с востока на запад лучше выбрать утренний рейс, а с запада на восток - наоборот, вечерний. При этом перед полетом в западном направлении дней за пять нужно постараться отходить ко сну на пару часов позже. В восточном направлении, наоборот - на пару часов раньше.
  • Точно так же, ложась спать раньше или позже, можно подготовиться и к переводу стрелок часов на летнее или зимнее время.
  • Необходимо постараться ложиться спать не позже 23:00 - это при условии, что сон будет продолжаться 7-8 часов. В противном случае лечь стоит раньше.
  • В случае посменной работы или каких-то других обстоятельств человек должен получить свою порцию сна в другой половине суток или, в крайнем случае, на следующие сутки.
  • Не стоит откладывать сон на выходные. За 4-5 дней организм может так сильно устать, что отсыпания на выходных будет недостаточно. Или же может случиться другое - может сложиться обманчивое мнение, что усталости нет, и организм будет мучить бессонница. Нельзя доводить организм до крайностей, испытывать его на прочность. Последствия могут быть очень серьезными.

Лечение сбоя циркадного ритма

Нарушения циркадного ритма лечатся после вынесенного диагноза. Целью лечения является возвращение организма человека к нормальному режиму работы, восстановление работы его биологических часов. Основным и самым распространенным методом лечения расстройства циркадного ритма является лечение ярким светом или хронотерапия. Терапия ярким светом используется с той целью, чтобы восстановить нормальное функционирование организма человека, наладить работу его внутренних биологических часов. Эта методика дает значительные результаты людям, у которых нарушены циркадные ритмы сна.

Нобелевскую премию по физиологии и медицине присудили троим исследователям, чьи работы помогли нам понять, как работают биологические часы.

Джеффри Холл, Майкл Росбаш и Майкл Янг. (Фото: Chinese University Of Hong Kong Handout / EPA.)

Колебания белка PER – молекулярная пружина суточных ритмов: накапливаясь в клетке, белок проникает в ядро и подавляет активность собственного гена; затем PER постепенно разрушается и освобождает свой ген – цикл повторяется. (Иллюстрация: Nobelprize.org.)

Жизнь на Земле с самого начала должна была приспосабливаться к тому, что день регулярно сменяет ночь, а ночь сменяет день. Почти все живые существа обзавелись специальным часовым механизмом, который переключает организм из дневного режима в ночной и обратно. Самая наглядная демонстрация того, как работают биологические часы, – чередование сна и бодрствования. Но биологические часы – это не только сон. Известно, что днем и ночью у нас разная температура тела, что днем и ночью у нас по-разному работают сердце и сосуды, что обмен веществ подчиняется суточным (или циркадным, или циркадианным) колебаниям. И то же самое можно сказать про другие живые организмы – про животных и про растения, про одноклеточных и многоклеточных.

То, что живой мир подчиняется какому-то внутреннему хронометру, заметили довольно давно. Еще в первой половине XVIII века французский астроном Жан-Жак де Меран обратил внимание на то, что растения гелиотропов, которые поворачивают соцветия вслед за солнцем и опускают свои листья на ночь, продолжают поднимать и опускать листья в полной круглосуточной темноте. Иными словами, дело вовсе не в том, есть солнце или нет, а в каком-то внутреннем механизме. Но что это за механизм? Ведь ни движение листьев, ни колебания температуры тела, ни сон – это не механизм, это лишь следствия его функционирования.

В начале 70-х годов прошлого века генетикам удалось найти зону в геноме дрозофил, которая управляла суточными ритмами. Если в эту геномную зону попадали какие-то изменения, суточный ритм мух выходил из 24-часового расписания, так что одни мухи жили так, как если бы в сутках было меньше часов – например, всего 19, а для других мух сутки увеличивались до 29 часов. Очевидно, все дело было в каком-то гене, который здесь находился. Он получил название period или per .

В 1984 году нынешние нобелевские лауреаты – Джеффри Холл (Jeffrey C. Hall ) и Майкл Росбаш (Michael Rosbash ), которые тогда работали в Брандейском университете, и Майкл Янг (Michael W. Young ) из Рокфеллеровского университета – сообщили сразу в двух статьях, что им удалось точно определить, где в геноме дрозофил сидит ген per. Впоследствии Холл и Росбаш сумели показать, что уровень белка PER в клетках колеблется в зависимости от времени суток: ночью его становится все больше, а днем, наоборот, все меньше и меньше. Вот, казалось бы, прекрасная молекулярная пружина, определяющая ход биологических часов.

Но почему белка становится то больше, то меньше? Проще всего было бы объяснить это отрицательной обратной связью. Как известно, многие белки блокируют работу собственных генов: если белковых молекул становится слишком много, они подавляют активность собственного гена, и не дают синтезировать новые копии РНК (напомним, что РНК-копия нужна для синтеза белка, без РНК никакого белка не получится).

Одновременно в клетке работают молекулярные машины, расщепляющие белки, и белок PER в том числе. Его становится все меньше, и в конце концов он освобождает собственный ген, так что тот начинает снова работать – цикл повторяется. Сам белок PER может взаимодействовать и с другими генами, повышая или понижая их активность, а те, в свою очередь, могут работать еще с каким-то набором генов – таким образом, за счет колебаний PER можно настроить работу множества внутриклеточных процессов. Заодно заметим, что в такой модели смена дня и ночи вообще не требуется – циклические молекулярные изменения происходят сами по себе, хотя, конечно, в действительности в живых организмах время суток, то бишь режим освещенности влияет на работу циркадных молекул.

Модель, в которой белок PER управляет собственной концентрацией, легко и изящно объясняла функционирование суточных ритмов, но поначалу в ней были некоторые белые пятна. Если вспомнить, что белки синтезируются в цитоплазме клетки, а ДНК сидит в клеточном ядре, то возникает вопрос: как PER проникает в ядро? То, что он проникает, доказали те же Холл и Росбаш, но кто ему помогает туда проникнуть? Загадка разрешилась в 1994 году, когда Майкл Янг нашел белку PER помощника – им оказался ген timeless и его белок TIM, который, как оказалось, абсолютно необходим для нормального хода биологических часов. Чтобы проникнуть в ядро, белку PER нужен белок TIM. Впоследствии Майкл Янг нашел еще один важный суточный белок – DBT, кодируемый геном doubletime . Задача белка DBT – делать так, чтобы PER накапливался и разрушался в соответствии с 24-часовым циклом. Иными словами, DBT контролирует точность хода биологических часов.

Конечно, это не все белки, от которых зависят суточные ритмы; в частности, как мы говорили выше, есть специальные молекулы, которые сообщают часовому механизму, много ли снаружи света (белки, которые синхронизируют аппарат биологических часов со временем суток, тоже открыли Холл, Росбаш и Янг). Тем не менее, принципиальная схема осталась неизменной: чтобы суточные ритмы работали, нужен PER, которого в клетке то много, то мало, нужен TIM, которые поможет PER проникнуть в ядро, и нужен DBT, который следит за частотой PER. И, что важно, схема эта оказалась универсальной – не только у дрозофил суточные часы работают по такой схеме, но вообще у всех живых существ.

Конечно, тут стоит напомнить, сколь много знание циркадного механизма значит для медицины. В последнее время мы все чаще слышим о том, какие проблемы могут возникнуть из-за сломанных биологических часов – что неудивительно, если учесть, сколько всего от них зависит. И речь не только о нарушениях сна; есть данные, что из-за проблем с суточными ритмами повышается вероятность , и что расстроенные биологические часы способствуют накоплению – со всеми вытекающими метаболическими проблемами.

Конечно, относительно суточных ритмов есть еще масса вопросов, связанных с их регуляцией и настройкой, с иерархией и взаимоотношениями часов из разных органов и тканей; наконец, есть кроме суточных ритмов, есть и месячные, и сезонные, и очевидно, что они как-то с суточными «коллегами».

Однако все это не отменяет того очевидного факта, что Холл, Росбаш и Янг раскрыли глубинную суть одного из самых фундаментальных свойств всех живых организмов, а растущее день ото дня количество статей на тему биологических часов говорит о том, что нынешним лауреатам удалось создать целое направление в современной биологии.

Объявлением лауреатов премии по физиологии и медицине началась в понедельник в Стокгольме ежегодная Нобелевская неделя. Нобелевский комитет заявил, что в этой номинации премии за 2017 год удостоены исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг за

открытие молекулярных механизмов, контролирующих циркадные ритмы — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи.

Жизнь на Земле адаптирована к вращению планеты. Уже давно было установлено, что все живые организмы, от растений до людей, обладают биологическими часами, которые позволяют организму приспосабливаться к изменениям, происходящим в течение суток в окружающей среде. Первые наблюдения в этой области были сделаны еще в начале нашей эры, с XVIII века начались более тщательные исследования.

К XX веку циркадные ритмы растений и животных были изучены достаточно полно, но оставалось секретом, как именно работают «внутренние часы». Этот секрет удалось раскрыть американским генетикам и хронобиологам Холлу, Росбашу и Янгу.

Модельным организмом для исследований стали плодовые мушки. Команде исследователей удалось обнаружить у них ген, контролирующий биологические ритмы.

Ученые выяснили, что этот ген кодирует белок, который накапливается в клетках на протяжении ночи и разрушается в течение дня.

Впоследствии они выделили и другие элементы, отвечающие за саморегуляцию «клеточных часов» и доказали, что биологические часы аналогичным образом работают и у других многоклеточных организмов, включая людей.

Внутренние часы адаптируют нашу физиологию к совершенно разному времени суток. От них зависит наше поведение, сон, метаболизм, температура тела, уровни гормонов. Наше самочувствие ухудшается, когда появляется несоответствие между работой внутренних часов и окружающей средой. Так, на резкую смену часового пояса организм реагирует бессонницей, усталостью, головной болью. Синдром смены часового пояса, джетлаг, уже несколько десятков лет входит в Международную классификацию болезней. Несовпадение образа жизни с ритмами, диктуемыми организмом, приводит к повышению риска развития множества заболеваний.

Первые задокументированные эксперименты с внутренними часами провел в XVIII веке французский астроном Жан-Жак де Меран. Он обнаружил, что листья мимозы опускаются с приходом темноты и вновь расправляются утром. Когда де Меран решил проверить, как растение будет вести себя без доступа света, оказалось, что листья мимозы опускались и поднимались независимо от освещения - эти явления были связаны с изменением времени суток.

В дальнейшем ученые выяснили, что подобные явления, подстраивающие организм под изменения условий в течение суток, есть и у других живых организмов.

Они были названы циркадными ритмами, от слов circa - «вокруг» и dies - «день». В 1970-х годах физик и молекулярный биолог Сеймур Бензер задался вопросом, можно ли идентифицировать ген, контролирующий циркадные ритмы. Ему удалось это сделать, ген получил название period, но механизм контроля оставался неизвестен.

В 1984 году узнать его удалось Холлу, Ройбашу и Янгу.

Они изолировали необходимый ген и выяснили, что он отвечает за процесс накопления и разрушения в клетках ассоциированного с ним белка (PER) в зависимости от времени суток.

Следующей задачей исследователей стало разобраться, как возникают и поддерживаются циркадные колебания. Холл и Росбаш предположили, что накопление белка блокирует работу гена, тем самым регулируя содержание белка в клетках.

Однако, чтобы заблокировать работу гена, белок, образующийся в цитоплазме, должен добраться до ядра клетки, где находится генетический материал. Оказалось, что PER действительно ночью встраивается в ядро, но как он туда попадает?

В 1994 году Янг открыл еще один ген, timeless, кодирующий белок TIM, необходимый для нормальных циркадных ритмов.

Он выяснил, что когда TIM связывается с PER, они оказываются способны проникнуть в ядро клетки, где и блокируют работу гена period благодаря ингибированию по принципу обратной связи.

Но некоторые вопросы все еще оставались без ответа. Например, что контролировало частоту циркадных колебаний? Янг в дальнейшем обнаружил еще один ген, doubletime, отвечающий за образование белка DBT, который задерживал накопление белка PER. Все эти открытия помогли понять, как колебания приспособлены к 24-часовому суточному циклу.

Впоследствии Холл, Ройбаш и Янг сделали еще несколько открытий, дополняющих и уточняющих предыдущие.

Например, они выявили ряд белков, необходимых для активации гена period, а также раскрыли механизм, с помощью которого внутренние часы синхронизируются со светом.

Наиболее вероятными претендентами на Нобелевскую премию в этой области были названы вирусолог Юань Чанг и ее муж, онколог Патрик Мур, открывшие ассоциированный с саркомой Капоши вирус герпеса восьмого типа; профессор Льюис Кантли, обнаруживший сигнальные пути ферментов фосфоинозитид-3-киназ и изучивший их роль в росте опухолей и профессор Карл Фристон, внесший серьезный вклад в анализ данных, полученных методами визуализации мозга.

В 2016 году лауреатом премии японец Есинори Осуми за открытие механизма аутофагии — процесса деградации и переработки внутриклеточного мусора.

Лауреатов Нобелевской премии по физиологии и медицине за 2017 год. Ими стали американские исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг. Премия будет вручена «за открытие молекулярных механизмов контроля циркадных ритмов». Что же это за ритмы и какие механизмы ими управляют? Почему это настолько важно?

- Наступает ночь. Город засыпает, просыпается мафия.

То, что активность живых существ зависит от времени суток, было известно испокон веков. Все знают, что коровы пасутся днем, петухи кричат утром, а котята хватают спящих людей за пятки в два часа ночи. У каждого вида живых существ, от одноклеточных цианобактерий до огромных многотонных китов и вековых деревьев, периоды активности сменяются периодами отдыха, в определенное время дня выбрасываются те или иные гормоны, листья сворачиваются и разворачиваются как по часам. Но что это за часы? Какова их природа? Немало копий было сломано за те 300 лет, что люди пытались ответить на эти вопросы. Нобелевскую премию в этом году заслуженно дали людям, которые поставили если не точку, то как минимум жирную черту, разделившую науку о механизмах, обусловливающих циркадные ритмы, на «до» и «после».

История вопроса

Наиболее логичным ответом на вопрос, откуда берется эта периодическая активность, представляются солнечные часы. Мол, солнце встает, активность «дневных» видов повышается, а «ночных» снижется. Основным регулятором является освещенность, а также сопутствующие ей факторы - рост и падение температуры, смена направления ветра и все в том же духе. Эта парадигма активно применялась еще древними римлянами , день которых начинался в момент восхода солнца над горизонтом, а ночь - в момент захода. Так как и день, и ночь состояли из 12 часов, длина часа у римлян зависела как от того, ночной это час или дневной, так и от времени года.

Первым проверить, действительно ли именно внешние факторы определяют активность живых существ, взялся французский астроном Жан-Жак де Меро в начале 18 века. В качестве модельного организма он использовал мимозу, которая очень явно реагирует на смену дня и ночи - в светлое время ее маленькие нежные листочки развернуты к солнцу, а в темное сложены и опущены вниз. Де Меро поместил мимозу в темный ящик и с удивлением наблюдал, как еще около недели она своевременно сворачивала и разворачивала листочки несмотря на отсутствие стимуляции светом (рис. 1). На основе этого он сделал предположение, что ритм этого процесса задается изнутри, а не снаружи.

Рисунок 1. Опыт Де Меро. Астроном заметил, что мимоза сохраняет способность утром разворачивать листочки, а ночью сворачивать их обратно даже без воздействия солнечного света.

Как чаще всего происходит в таких случаях, новое явление до поры до времени было забыто, а в начале 20 века переоткрыто. На протяжении многих десятилетий велись жаркие дебаты между идеологами «внутренних часов» и «факторов среды», пока в 1971 году не была опубликована прорывная статья калифорнийских ученых, где они показали, что циркадные ритмы имеют генетическую природу. Идея нетривиальная, так как даже сторонники «внутренних часов» считали, что если они и имеют генетическую природу, то число задействованных генов должно быть очень велико, и повлиять мутациями на этот признак значимо не выйдет.

В качестве модели использовали плодовых мушек дрозофил. Время было дикое, амплификаторы и секвенаторы еще не изобрели, а вместо пипеток в лабораториях были каменные топоры. Экспериментаторы лили на яйца мушек мутагены, вызывая изменения в случайных генах. И сумели получить три разных по «ритмике» линии дрозофил. Первая линия имела циркадный ритм продолжительностью 28 часов, вторая - 19 часов, а в третьей обычно ритмические параметры вообще не подчинялись никакому заметному циклу (рис. 2). Путем долгих изысканий методами классической генетики исследователи смогли локализовать ответственный за изменения участок. Это оказался ген в половой Х-хромосоме, который был назван period . На тот момент, в отсутствие молекулярных методов, двигаться дальше было невозможно. Что это за ген и как он работает - осталось загадкой.

Рисунок 2. Мутантные дрозофилы с нарушенными циркадными ритмами. Различные мутации в гене period могут изменить продолжительность циркадного цикла в бóльшую или меньшую сторону или даже полностью его уничтожить.

За что же дали Нобеля?

В середине 1980-х, когда каменные топоры уже отошли на второй план, а в лабораториях биологов робко обживались первые амплификаторы, в США над проблемой циркадных ритмов работали две группы. Первая под руководством Джеффри Холла и Майкла Росбаша трудилась в Брандейском университете в Массачусетсе, вторая под руководством Майкла Янга - в университете Рокфеллера в Нью-Йорке. Примерно одновременно эти группы смогли клонировать ген period , секвенировать и изучить его последовательность. Первые данные о структуре гена и кодируемого им белка не дали ясного ответа о механизмах его работы, породив множество курьезных теорий.

Непонятно было, прежде всего, на каком уровне действовал этот ген. Бóльшая часть строившихся тогда предположений относила его продукт, получивший название PER, к мембранным белкам, которые либо регулируют доступ в клетку какого-либо действующего вещества извне, либо изменяют характер взаимодействия клеток между собой. Одно было ясно - должен существовать некоторый осциллятор с периодом в 24 часа и его работа должна быть напрямую связана с белком PER.

И этот осциллятор был найден - им оказался, как ни странно, сам белок PER. Холл и Росбаш показали, что в нейронах мухи концентрация этого белка имеет 24-часовую цикличность с пиком около полуночи. Такому же циклу оказалась подвержена мРНК этого белка, однако пик ее концентрации оказался сдвинут на несколько часов раньше по отношению к пику белка (обычно такие пики должны совпадать). Исследователи получили нонсенс-мутантов по этому белку (при этом мРНК синтезируется, а белок - нет) и увидели, что при этом периодические изменения концентрации мРНК пропадают. Вывод последовал незамедлительно - белок PER является ядерным модулятором транскрипции и блокирует собственный синтез (рис. 3а ).

Рисунок 3. В организме действует осциллятор, состоящий из белков, негативно регулирующих экспрессию собственной мРНК. За счет разветвленной системы положительных и отрицательных регуляторов осциллятор имеет период примерно в 24 часа и может подстраивать свою работу под изменения светового дня.

На основе этого вывода предложили гипотезу TTFL (Transcription-Translation Feedback Loop - транскрипционно-трансляционной обратной связи). Согласно этой гипотезе, осциллятор, отвечающий за циркадные ритмы, состоит из одного или нескольких белков, которые контролируют собственную экспрессию при помощи негативной регуляции транскрипции и/или трансляции. Было понятно, что один ген period не способен полностью построить циркадный ритм, ему нужны партнеры.

Этих партнеров обнаружил Майкл Янг. Он выявил ген, названный им timeless , мРНК и продукт которого (белок TIM) также подвергались 24-часовым осцилляциям. Оказалось, что белки PER и TIM могут попасть в ядро только провзаимодействовав друг с другом. Один без другого работать не способен и даже более того - без связи они моментально разрушаются в протеасоме. Вместе же они попадают в ядро и блокируют собственную экспрессию (рис. 3а ).

В дальнейшем обнаружили также и позитивные регуляторы экспрессии этих генов, что еще сильнее усложнило картину. Выявили и взаимосвязи со средовыми факторами. Те, кто пересекал в ходе путешествий множество часовых поясов, знают, что при этом организм поначалу не может подстроиться под новый световой день, но через несколько дней циркадные ритмы синхронизируются с реальностью, и жизнь снова становится прекрасна, а сон крепок.

За такую настройку, как оказалось, отвечает целый набор белков-регуляторов, воздействующих на все тот же осциллятор PER-TIM (рис. 3б ). Например, Янг обнаружил белок CRY, который активируется в ответ на повышение внешней освещенности, связывает TIM и отправляет его на деградацию. Таким образом, раннее или позднее утро меняют характеристики пика TIM, что в свою очередь меняет профиль экспрессии PER. Через несколько дней циркадный ритм стабилизируется в новом положении.

Все эти данные и успешно подтвержденные гипотезы довольно сильно изменили наше понимание циркадных ритмов. Теория о внутреннем осцилляторе была однозначно подтверждена благодаря усилиям Холла, Росбаша и Янга, за что они вполне заслуженно получили Нобелевскую премию . Но исследования этой интересной области все еще продолжаются.

Не мухами едиными...

Мухи - это, конечно, хорошо, но что там у млекопитающих вообще и у человека в частности? У нас всё оказалось похоже в общем, но отлично в деталях. Циркадные ритмы у млекопитающих делятся на центральные и периферические. Центральным регулятором выступает супрахиазматическое ядро гипоталамуса в головном мозге . При изменении ритма освещенности оно первое перестраивает свой цикл активности системы белков PER. Под контролем этого ядра идет выделение мелатонина (гормона сна) в эпифизе, через который оно регулирует циркадные ритмы в остальных тканях организма.

На белки циркадного каскада оказались завязаны многие физиологические функции клеток и тканей (рис. 4). Например, утром инсулиновый ответ поджелудочной железы на потребление углеводов более яркий, чем вечером. И это даже не получается объяснить ночной «голодовкой» - животные, которым 24 часа с постоянной скоростью вводили в кровь глюкозу, имели наименьший ее уровень (и наибольший уровень инсулина) утром. Аналогично меняется усвоение жиров и белков. Таким образом, совет «не есть после 18», столь частый в фитнес-журналах, оказывается, имеет под собой физиологическое обоснование .

Рисунок 4. Многие аспекты функционирования человеческого организма зависят от времени суток и контролируются циркадными ритмами.

Циркадные ритмы вообще влияют почти на все области нашей физиологии. От времени суток зависят наша работоспособность, уровни почти всех основных гормонов, заболевания и так далее. Разумеется, уже есть группы, осваивающие гранты в вопросах связи нарушенных циркадных ритмов и рака, нейродегенеративных и сердечно-сосудистых заболеваний и других интересных тем.

Очень перспективными являются исследования связи циркадных ритмов и старения. Известно, что супрахиазматическое ядро с возрастом деградирует и к старости работает уже не так регулярно. Старые люди достоверно хуже адаптируются к смене часовых поясов, хуже переносят вынужденное бодрствование и восстанавливаются во время сна. На грызунах исследователи показали, что нарушение генов циркадных ритмов ведет к значительному снижению продолжительности их жизни и, что довольно интересно, к более раннему появлению «старческих» заболеваний .

Дальнейшее развитие

В настоящий момент циркадная биология развивается бешеными темпами. Изучают варианты фармакологического воздействия на циркадные ритмы, особенно нарушенные вследствие перелетов, возраста или заболеваний. В аптеках уже можно купить препараты мелатонина для путешественников.

Статьи по теме: