Теория игр на примерах. Теория игр в экономике и других областях человеческой деятельности

Для человека, не являющегося экспертом в политике, Брюс Буэно де Мескита из Университета Нью-Йорка делает удивительно точные событий. Ему удалось с точностью до нескольких месяцев предсказать уход со своих постов и Переверза Мушарафа. Он точно назвал приемника Аятоллы Хомейни на посту лидера Ирана за 5 лет до его смерти. На вопрос о том, в чем секрет, он отвечает, что ответа не знает - его знает игра. Под игрой здесь имеется в виду математический метод, который изначально был создан для формирования и анализа стратегий различных игр, а именно - теория игр. В экономике она используется наиболее часто. Хотя изначально она была разроботана для построения и анализа стратегий в играх, использующихся для развлечений.

Теория игры - это численный аппарат, позволяющий рассчитать сценарий, или, точнее, вероятность различных сценариев поведения системы или "игры", контролируемой различными факторами. Эти факторы, в свою очередь, определяются некоторым числом "игроков".

Таким образом, теория игр, в экономике получившая главный толчок к развитию, может применятся в самых разных областях человеческой деятельности. Пока рано говорить о том, чтобы эти программы применялись для разрешения военных конфлмктов, но в будущем это вполне реально.

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

экспериментальной экономики

И других методов анализа

Как и любая другая не полностью конвенциальная наука, институциональная экономика применяет разные методы анализа. К ним относятся традиционный микроэкономический инструментарий, эконометрические методы, анализ статистической информации и др. В данном разделе кратко рассмотрим применение теории игр, экспериментальной экономики и других методов, адаптированных к институциональному анализу.

Теория игр . Теория игр – аналитический метод, получивший развитие после второй мировой войны и используемый для анализа ситуаций, в которых индивидуумы стратегически взаимодействуют. Шахматы – это прототип стратегической игры, так как результат зависит от поведения противника, так же как и от поведения собственно игрока. Из-за аналогий, найденных между стратегическими играми и формами политического и экономического взаимодействия, теории игр уделяется повышенное внимание в общественных науках. Современная теория игр начинается с работы Д. Неймана и О. Моргенштерна «Теория игр и экономическое поведение» (1944, русский вариант – 1970). Теория исследует взаимодействие индивидуальных решений при некоторых допущениях, касающихся принятия решения в условиях риска, общего состояния окружающей среды, кооперативного или некооперативного поведения других индивидов. Очевидно, что рациональному индивиду приходится принимать решения в условиях неопределенности и взаимодействия. Если выигрыш одного индивида является проигрышем другого, то это игра с нулевой суммой. Когда каждый из индивидов может выиграть от решения одного из них, то имеет место игра с ненулевой суммой. Игра может быть кооперативной, когда возможен сговор, и некооперативной, когда преобладает антагонизм. Одним из известных примеров игры с ненулевой суммой является дилемма заключенного (ДЗ). Этот пример показывает, что, вопреки утверждениям либерализма, преследование индивидом собственного интереса ведет к решению менее удовлетворительному, чем возможные альтернативы.

Предельная теорема Ф.И. Эджуорта рассматривается как ранний пример кооперативной игры n участников. Теорема утверждает, что по мере увеличения числа участников в экономике чистого обмена сговор становится менее полезным, а множество возможных равновесных относительных цен (ядро) уменьшается. Если число участников стремится к бесконечности, то остается только одна система относительных цен, соответствующая ценам общего равновесия.

Понятие оптимального (равновесного) по Нэшу решения является одним из ключевых в теории игр. Оно было введено в 1951 г. американским экономистом-математиком Джоном Ф. Нэшем.

В данном контексте достаточно рассмотреть это понятие применительно к теоретико-игровой модели двух лиц 25 . В этой модели каждый из участников располагает некоторым непустым множеством стратегий S i , i = 1, 2. При этом выбор конкретных стратегий из числа доступных игроку осуществляется таким образом, чтобы максимизировать значение собственной функции выигрыша (полезности) u i , i = 1, 2. Значения функции выигрыша заданы на множестве упорядоченных пар стратегий игроков S 1 ´ S 2 , элементами которого выступают всевозможные сочетания стратегий игроков (s 1 , s 2) (упорядоченность пар стратегий заключается в том, что в каждом из сочетаний на первом месте стоит стратегия первого игрока, на втором – второго), т.е. u i = u i (s 1 , s 2), i = 1, 2. Иными словами, выигрыш каждого игрока зависит не только от выбираемой им самим стратегии, но и от стратегии, принятой его противником.

Оптимальным по Нэшу решением признается пара стратегий (s 1 *, s 2 *), s i S i , i = 1, 2, обладающая следующим свойством: стратегия s 1 * обеспечивает игроку 1 максимальный выигрыш, когда игрок 2 выбирает стратегию s 2 *, и симметрично s 2 * доставляет максимальное значение функции выигрыша игрока 2 , когда игроком 1 принимается стратегия s 1 *. Пара стратегий приводит к равновесию по Нэшу, если выбор, сделанный игроком 1 , оптимален при данном выборе игрока 2 , а выбор, сделанный игроком 2, оптимален при данном выборе игрока 1 . Понятие оптимальности по Нэшу очевидным образом обобщается на случай игры n лиц. Следует заметить, что существование равновесия по Нэшу не означает его Парето-оптимальности, а Парето-оптимальный набор стратегий не обязательно должен удовлетворять равновесию по Нэшу. В 1994 г. Дж. Ф. Нэшу, Р. Зельтену и Дж. Ч. Харшани была присуждена Премия памяти А. Нобеля по экономике за их вклад в разработку теории игр и ее приложение к экономике.

Обращение к этому методу опирается на его явную силу в освещении причин и последствий институционального изменения. Способность теории игр помочь анализировать последствия изменения правил бесспорна; ее сила в раскрытии причин неоднозначна. Любой теоретико-игровой анализ должен предполагать предшествующее определение основных правил игры. Так, О. Моргенштерн в 1968 г. писал: «Игры описаны путем определения возможного поведения в пределах правил игры. Правила являются в каждом случае однозначными; например, в шахматах определенные ходы разрешены для специфических фигур, но запрещены для других. Правила также ненарушаемы. Когда социальная ситуация рассматривается как игра, правила даны физической и юридической окружающей средой, в пределах которой имеют место действия индивидуумов» 26 .

Если эта точка зрения принимается, нельзя ожидать, что теория игр объяснит причину изменения в фундаментальных правилах организации экономической, политической и социальной жизни: определение таких правил, очевидно, является предварительным условием для проведения такого анализа.

Для понимания значения институтов используются модели координационной игры и дилеммы заключенных.

Рассмотримпроблему чистой и обобщенной координации . Чистая координационная игра показывает, что экономические агенты не могут гарантированно реализовать взаимные выгоды кооперации, даже если отсутствует конфликт интересов. Другими словами, в ситуации «чистой» координации имеется множественное равновесие, которое одинаково предпочитается каждой стороной. В этом случае нет конфликта интересов, но нет гарантии, что все будут стремиться к одному равновесному результату. Известный пример – выбор стороны дороги (правой или левой), по которой люди должны ездить (рис. 2.1). Данная игра имеет два равновесия по Нэшу, соответствующих наборам стратегий (левая, левая) и (правая, правая). Никто заранее не возражает ездить справа или слева, но достижение скоординированного результата при большом количестве участников переговоров потребует высоких трансакционных издержек. Необходим институт, который бы выполнил функцию фокальной точки, т.е. ввел согласованное решение. Таким институтом может быть результат общего знания, полученного на основе однотипного анализа ситуации, а может быть и государство, которое вмешивается, чтобы ввести правило координации и сократить трансакционные издержки. В целом институты выполняют координационную функцию, снижая неопределенность.

Обобщенная проблема координации существует, если матрица выигрышей такова, что в любой точке равновесия никто из игроков не имеет стимула изменить свое поведение при данном поведении других игроков, но и никто из игроков не желает, чтобы какой-либо другой игрок изменил его. В этом случае каждый предпочел бы скоординированный результат не скоординированному, но, возможно, каждый захочет предпочесть особый скоординированный результат (рис. 2.2). Например, два производителяА и Б используют различную технологию X и Y , но хотят ввести национальный стандарт изделия, который вызовет сетевые внешние эффекты. Производитель А больше выиграет, если стандартом станет технология Х , а производитель Б – технология Y . Выигрыш оказывается распределенным асимметрично. Итак, производитель А (Б ) предпочтет, чтобы стандартом стала X (Y )-технология, но оба предпочтут любой из скоординированных результатов не скоординированному. Трансакционные издержки в этой модели будут выше, чем в предыдущей (особенно при участии большого количества сторон), так как налицо столкновение интересов. Замена частных попыток координации государственным вмешательством позволила бы уменьшить трансакционные издержки в экономике. Примерами являются государственное введение технологических стандартов, стандартов измерения и качества и т.д. Обобщенная координационная модель иллюстрирует важность не только координационной функции институтов, но и распределительной, от которой зависит способ, ограничивающий возможные альтернативы игроков, и в конечном счете результативность взаимодействия.

Дилемма заключенного часто приводится как пример проблемы установления кооперации между индивидами. В игре участвуют два игрока, два заключенных, которые разделены своими надзирателями. У каждого есть два выбора: кооперироваться, т.е. хранить молчание, или отказаться от кооперации, т.е. предать другого. Каждый должен действовать, не зная, что предпримет другой. Каждому говорят, что признание, если другой молчит, ведет к свободе. Отказ от признания в случае предательства другого означает смерть. Если оба признаются, то проведут вместе несколько лет в тюрьме. Если каждый из них откажется от признания, то будет на короткое время арестован и затем освобожден. Предполагая, что тюрьма предпочтительнее смерти, а свобода – наиболее желаемое состояние, заключенные сталкиваются с парадоксом: хотя они оба предпочли бы не предавать друг друга и провести недолгое время в тюрьме, каждый окажется в лучшем положении, предав другого, не считаясь с тем, что предпримет другой. Аналитически способность заключенных установить связь находится на заднем плане, так как стимулы к предательству остаются одинаково сильными при наличии или без наличия связи. Предательство остается доминирующей стратегией.

Этот анализ помогает объяснить, почему эгоистично-макси­ми­зирующие агенты не могут рационально приходить к кооперативному результату или поддерживать его (парадокс индивидуальной рациональности). Он полезен в объяснении ex post распада картеля или другого кооперативного соглашения, но не объясняет, каким способом сформирован картель или кооперативное соглашение. Если заключенные способны достичь соглашения, то проблема исчезает: они договариваются не предавать друг друга и прийти к тому, чтобы максимизировать совместные выигрыши. Итак, достаточно вступить в соглашение, которое совместно желательно, но делает каждого в отдельности потенциально более уязвимым к ущербу, чем в отсутствие такого соглашения. Этот анализ обращает внимание на институты, которые с индивидуальной точки зрения могут превратить такие соглашения в менее рискованные.

В теоретической литературе дается различие между анализом кооперативных и некооперативных игр. Как уже описано, игроки способны заключать связывающие их соглашения. Гарант таких соглашений – неявный. Многие теоретики игр настаивают на том, что обман и разрыв соглашений – общие черты человеческих взаимоотношений, поэтому такое поведение должно оставаться внутри стратегического пространства. Они пытаются объяснить возникновение и сохранение кооперации в модели некооперативных игр, особенно в модели бесконечно повторяющейся последовательности игр ДЗ. Конечная последовательность игр не даст результата, потому что с момента, когда доминирующая стратегия в последней игре станет явно отступнической, и с момента, когда она станет ожидаемой, то же самое будет верно для предпоследней игры и так далее, до первой игры. В бесконечных сериях игр при определенных предположениях о дисконтировании выигрышей может появиться кооперация как равновесная стратегия. Таким образом, некооперативный анализ не избегает потребности принять основные правила игры как часть описания стратегического пространства. Он просто предполагает отличный и менее ограничительный набор правил. В отличие от кооперативного анализа соглашения могут быть разорваны по желанию. С другой стороны, выход из непрерывной игры ограничен. Ни один подход не избегает потребности определять правила игры, перед тем как начать анализ.

Одним из наиболее интересных недавних достижений в исследовании ДЗ была организация турниров между предопределенными стратегиями для проведения конечно повторяющихся игр ДЗ с двумя участниками. Первый из них был организован Робертом Аксельродом (описан в 1984 г.) и включал игру последовательностью в 200 партий. Опытными в ДЗ участниками были предложены компьютерные программы, и которые затем состязались друг с другом.

Р. Аксельрод сообщил игрокам, что стратегии будут оценены не по числу побед, а согласно сумме очков против всех других стратегий, причем три очка каждый получает за взаимную кооперацию, одно очко за взаимное отступничество и выигрыш 5 к 0 за отступничество/кооперацию. Как отмечено ранее, аналитически ясно, что отступничество – доминирующая стратегия последней игры и, следовательно, каждой предыдущей игры.

Рассмотрим матрицу выигрышей в ДЗ, анализируемую Р. Аксельродом 27 (рис. 2.3). Независимо от того, что делает другой игрок, предательство дает более высокое вознаграждение, чем кооперация. Если первый игрок думает, что другой игрок будет молчать, то ему выгоднее предать ($5>$3). С другой стороны, если первый игрок думает, что другой предаст, ему все равно выгоднее предать самому ($1 лучше, чем ничего). Следовательно, искушение склоняет к предательству. Но если оба предают, то оба получают меньше, чем в ситуации кооперации ($1+$1<$3+$3).

Второй игрок

Кооперируется

Первый игрок

Кооперируется

Рис. 2.3 . Матрица выигрышей в дилемме заключенного

Дилемма заключенного – знаменитая проблема в экономике – показывает: то, что рационально или оптимально для одного агента, может не быть рациональным или оптимальным для группы индивидов, рассматриваемых совместно. Эгоистичное поведение индивида может быть вредным или разрушительным для группы. В повторяющихся играх ДЗ соответствующая стратегия неочевидна. Чтобы найти хорошую стратегию, и были организованы турниры. Если выигрыш был бы получен строго на основе победа–проигрыш, то каждый участник турнира должен был предложить непрерывное отступничество. Однако правила выигрыша дали понять, что организация некоторой кооперации могла бы привести к более высоким общим результатам. К удивлению многих, победила простая стратегия «зуб за зуб», предложенная А. Рапопортом: игрок кооперируется на первом шаге и затем делает тот ход, который другой игрок делал на предыдущем шаге.

Во втором турнире участвовало гораздо больше игроков, в том числе профессионалов, а также тех, кто знал о результатах первого раунда. Итогом была еще одна победа стратегии копирования («зуб за зуб»).

Анализ результатов турниров выявил четыре свойства, приводящие к успешной стратегии: 1) стремление избежать ненужного конфликта и кооперироваться так долго, как это делает другой; 2) способность к вызову перед лицом ничем не вызванного предательства другого; 3) прощение после ответа на вызов; 4) ясность поведения, чтобы другой игрок мог распознать и адаптироваться к образу действия первого.

Р. Аксельрод показал, что кооперация может начаться, развиваться и стабилизироваться в ситуациях, которые в противном случае являются экстраординарными, не обещая ничего хорошего. Можно согласиться с тем, что стратегия «зуб за зуб» в аналитическом смысле иррациональна в конечно повторяющейся игре, но эмпирически, очевидно, нет. Если бы стратегия «зуб за зуб» состязалась с другими аналитическими стратегиями, все из которых состояли из непрерывных отступничеств, она не смогла бы победить в турнире.

Теория игр может быть важным инструментом для изучения человеческого взаимодействия в ограниченных правилами обстоятельствах. Благодаря своим возможностям изучать последствия разных институциональных соглашений она также может быть полезна с точки зрения государственной политики при проектировании новых институциональных соглашений. Теория игр использовалась в анализе общественных благ, олигополии, картеля и сговоров на рынках товаров и труда. При всех своих достоинствах теория игр обладает и относительными слабостями. Некоторые авторы высказали сомнения относительно применения модели дилеммы заключенного в социальной науке. Например, М. Тейлор в 1987 г. предположил, что такие игры соответствуют обстоятельствам обеспечения общественными благами. В 1985 г. Н. Шофилд утверждал, что агенты должны формировать согласованные понятия об убеждениях и желаниях других агентов, включая проблемы познания и интерпретации, которые не просты для моделирования 28 . Многие экономисты отмечали, что использование теории игр без оговорок может свести экономическую деятельность к слишком статичной схеме. В частности, нобелевский лауреат Р. Стоун в 1948 г. писал: «Главная черта, благодаря которой теория игр впадает в противоречие с живой действительностью, заключается в том, что объект исследования ограничен во времени – игра имеет начало и конец. Об экономической действительности этого не скажешь. Именно в возможности обособить партию от игры и заключается глубокое расхождение теории с реальностью, а это расхождение ограничивает ее применение» 29 . Однако с тех пор неоценимо много сделано для сглаживания этого расхождения и расширения применения теории игр в экономике.

Экспериментальная экономика . Другим методическим подходом, использующимся для проверки постулатов экономической теории и смежных наук, а также объяснения институциональных проблем является экспериментальная экономика . Влияние проектируемых институтов на эффективность разме­щения ресурсов не всегда можно предсказать ex ante. Один из вариантов экономии на издержках ех post – имитация работы институтов в лабораторных условиях.

Вообще экономический эксперимент – это воспроизведение экономического явления или процесса с целью изучения в наиболее благоприятных условиях и дальнейшего практического изменения. Эксперименты, которые осуществляются в реальных условиях, называются естественными, или полевыми, а эксперименты, проводимые в искусственных условиях, – лабораторными. Последние зачастую требуют использования экономико-математических методов и моделей. Естественные эксперименты могут проводиться на микроуровне (эксперименты Р. Оуэна, Ф. Тейлора, по внедрению хозрасчета на предприятии и т.п.) и на макроуровне (варианты экономической политики, свободные экономические зоны и пр.). Лабораторные эксперименты – это искусственно воспроизведенные экономические ситуации, некие экономические модели, чья среда (условия протекания эксперимента) контролируется исследователем в лаборатории.

Американский экономист Эл. Рот, с конца 70-х гг. работающий в области экспериментальной экономики, отмечает ряд преимуществ лабораторных экспериментов перед «полевыми» 30 . В лабораторных условиях возможен полный контроль экспериментатора над средой и поведением субъектов, в то время как при «полевых» экспериментах можно контролировать лишь ограниченное число факторов среды и почти невозможно – поведение экономических субъектов. Именно благодаря этому лабораторные эксперименты позволяют более точно определять условия, при которых можно ожидать повторения отдельных явлений. Кроме того, естественные эксперименты дорогостоящи, и в случае неудачи затрагивают судьбы многих людей.

Область интересов экспериментальной экономики достаточно обширна: положения теории игр, теории отраслевых рынков, модель рационального выбора, феномен рыночного равновесия, проблемы общественных благ и др.

Для примера остановимся на результатах исследования сравнительной эффективности институтов рынка, которые опубликованы Ч.А. Холтом и представлены А.Е. Шаститко 31 . В исследовании сопоставляются выводы теоретической и экспериментальной моделей рынка, полученные с помощью контролируемых экспериментов. Результаты поведения агентов измеряются с помощью коэффициента исчерпания суммы потенциальных рент покупателя и продавца, что соответствует эффективности обмена. Коэффициент исчерпания – отношение фактически (экспериментально) полученной ренты к максимально возможной величине – изменяется от 0 до 1. Сравнение проводилось по следующим формам рынка: двусторонний аукцион, торговля на основе ценовых заявок одной из сторон, расчетная палата, децентрализованные переговоры о цене, торговля на основе заявок с последующими переговорами. Наиболее интересные результаты экспериментов получены разными группами исследователей по двум первым формам рынка (табл. 2.1).

В данной статье рассматривается применение теории игр в экономике. Теория игр является разделом математической экономики. Она разрабатывает рекомендации по рациональному действию участников процесса при несовпадении их интересов. Теория игр помогает предприятиям принять оптимальное решение в условиях конфликтной ситуации.

  • Активные операции коммерческих банков и их бухгалтерский учет
  • Совершенствование формирования фонда капитального ремонта в многоквартирных домах
  • Нормативно-правовое регулирование вопросов оценки качества предоставляемых государственных (муниципальных) услуг в России

Теория игр и экономика неразрывно связаны друг другом, так как методы решения задач теории игр помогают определить наилучшую стратегию различных экономических ситуаций. Так как же характеризуется понятие «теория игр»?

Теория игр представляет собой математическую теорию принятия решений в условиях конфликта. Теория игр есть важная часть теории исследования операций, изучающая вопросы принятия решений в конфликтных ситуациях .

Теория игр является разделом математической экономики. Целью теории игр является разработка рекомендаций по рациональному действию участников процесса при несовпадении их интересов, т. е. в условиях конфликтной ситуации. Игра является моделью конфликтной ситуации. Игроками в экономике являются партнеры, которые принимают участие в конфликте. Результат конфликта – выигрыш или проигрыш .

В общем, конфликт имеет место быть в разных областях человеческого интереса: в экономике, социологии, политологии, биологии, кибернетике, военном деле. Чаще всего теория игр и конфликтные ситуации применяется в экономике. Для каждого игрока присутствует определенный набор стратегий, которые игрок может применить. Пересекаясь, стратегии нескольких игроков создают определенную ситуацию, где каждый игрок получает определенный результат (выигрыш или проигрыш). При выборе стратегии важно учитывать не только получение максимального выигрыша для себя, но так же возможные шаги противника, и их влияние на ситуацию в целом.

Чтобы повысить качество, а также эффективность принимаемых экономических решений в условиях рыночных отношений и неопределенности разумно могут применяться методы теории игр.

В экономических ситуациях игры могут иметь полную информацию или же неполную. Чаще всего экономисты сталкиваются с неполной информацией для принятия решений. Поэтому необходимо принимать решения в условиях неопределенности, а также в условиях определенного риска. При решении экономических задач (ситуаций) обычно сталкиваются с одноходовыми и многоходовыми играми. Количество стратегий может быть конечным или же бесконечным .

Теория игр в экономике использует, в основном, матричные или прямоугольные игры, для которых составляют платежную матрицу (Таблица 1).

Таблица 1. Платежная матрица игры

Следует дать определение данному понятию. Платежная матрица игры – это матрица, которая показывает платеж одного игрока другому при условии, что первый игрок выбирает стратегию Аi, второй – Вi .

Какую цель за собой преследует решение экономических задач с помощью теории игр? Решить экономическую задачу – это найти оптимальную стратегию первого и второго игрока и найти цену игры.

Решим экономическую задачу, составленную мной.

В городе Г имеются две конкурирующие компании («Сладкий мир» и «Сладкоежка»), которые занимаются производством шоколада. Обе компании могут производить молочный шоколад и горький шоколад. Стратегию компании «Сладкий мир» обозначим Аi, компании «Сладкоежка» - Вi. Рассчитаем эффективность для всех возможных вариантов сочетаний стратегий компаний «Сладкий мир» и «Сладкоежка» и построим платежную матрицу (Таблица 2).

Таблица 2. Платежная матрица игры

У данной платежной матрицы нет седловой точки, поэтому она решается в смешанных стратегиях.

U1 = (а22-а21) / (а11+а22-а21-а12) = (6-3) / (5+6-3-4) =0,75.

U2 = (а11-а12) / (а11+а22-а21-а12) = (5-4) / (5+6-3-4) = 0,25.

Z1 = (а22-а12) / (а11+а22-а21-а12) = (6-4) / (5+6-3-4) = 0,4.

Z2 = (а11-а21) / (а11+а22-а21-а12) = (5-3) / (5+6-3-4) = 0,6.

Цена игры = (а11*а22-а12*а21) / (а11+а22-а21-а12) = (5*6-4*3) / (5+6-3-4) = 4,5.

Мы можем сказать, что компании «Сладкий мир» следует распределить производство шоколада следующим образом: 75% от общего объема производства отдать производству молочного шоколада, а 25% - производству горького шоколада. Компания «Сладкоежка» на 40% должна производить молочный шоколад и на 60% - горький.

Теория игр занимается принятием решений в условиях конфликтных ситуаций двумя и более разумными противниками, каждый из которых стремится оптимизировать свои решения за счет других .

Таким образом, в данной статье было рассмотрено применение теории игр в экономике. В экономике часто возникают моменты, когда необходимо принять оптимальное решение, а вариантов принятия решений несколько. Теория игр помогает принять решение в условиях конфликтной ситуации. Теория игр в экономике может помочь определить оптимальный выпуск продукции для предприятия, оптимальную выплату страховых взносов и т. п.

Список литературы

  1. Белолипецкий, А. А. Экономико-математические методы [Текст] : учебник для студ. Высш. Учеб. Заведений / А. А. Белолипецкий, В. А. Горелик. – М.: Издательский центр «Академия», 2010. – 368 с.
  2. Лугинин, О. Е. Экономико-математические методы и модели: теория и практика с решением задач [Текст] : учебное пособие / О. Е. Лугинин, В. Н. Фомишина. – Ростов н/Д: Феникс, 2009. – 440 с.
  3. Невежин, В. П. Теория игр. Примеры и задачи [Текст] : учебное пособие / В. П. Невежин. – М.: ФОРУМ, 2012. – 128 с.
  4. Слива, И. И. Применение метода теории игр для решения экономических задач [Текст] / И. И. Слива // Известия Московского государственного технического университета МАМИ. – 2013. - №1. – С. 154-162.
  • С помощью теории игр предприятие получает возможность предусмотреть ходы своих партнеров и конкурентов
  • Сложный инструментарий следует использовать только при принятии принципиально важных стратегических решений

    В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.

    Уже в момент ее зарождения, которым считают публикацию в 1944 г. монографии Дж. Неймана и О. Моргенштерна “Теория игр и экономическое поведение”, многие предсказали революцию в экономических науках благодаря использованию нового подхода. Эти прогнозы нельзя было считать излишне смелыми, так как с самого начала данная теория претендовала на описание рационального поведения при принятии решений во взаимосвязанных ситуациях, что характерно для большинства актуальных проблем в экономических и социальных науках. Такие тематические области, как стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются ключевыми в теории игр и непосредственно связаны с управленческими задачами.

    Первые работы по теории игр отличались упрощенностью предположений и высокой степенью формальной абстракции, что делало их малопригодными для практического использования. За последние 10 – 15 лет положение резко изменилось. Бурный прогресс в промышленной экономике показал плодотворность методов игр в прикладной сфере.

    В последнее время эти методы проникли и в управленческую практику. Вполне вероятно, что теория игр наряду с теориями трансакционных издержек и “патрон – агент” будет восприниматься как наиболее экономически обоснованный элемент теории организации. Следует отметить, что уже в 80-х годах М. Портер ввел в обиход некоторые ключевые понятия теории, в частности такие, как “стратегический ход” и “игрок”. Правда, эксплицитный анализ, связанный с концепцией равновесия, в этом случае еще отсутствовал.

    Основные положения теории игр

    Чтобы описать игру, необходимо сначала выявить ее участников. Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат, канасты и т.п. Иначе обстоит дело с “рыночными играми”. Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных.

    Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Эти действия обозначаются термином “ход”. Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют “платежи” (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах (преимущественно дисконтированная прибыль).

    Еще одним основным понятием данной теории является стратегия игрока. Под ней понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему “лучшим ответом” на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры.

    Важна и форма предоставления игры. Обычно выделяют нормальную, или матричную, форму и развернутую, заданную в виде дерева. Эти формы для простой игры представлены на рис. 1а и 1б.

    Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль П K . При вступлении в жесткую конкурентную борьбу оба получают прибыль П W . Если один из конкурентов устанавливает высокую цену, а второй – низкую, то последний реализует монопольную прибыль П M , другой же несет убытки П G . Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.

    При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия “низкой цены” является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль П K (которая для обоих игроков выше, чем прибыль П W) не достигается.

    Стратегическая комбинация “низкие цены/низкие цены” с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.

    Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой “компенсации”. Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть “война цен”.

    Как отмечалось, оба рисунка характеризуют одну и ту же игру. Предоставление игры в нормальной форме в обычном случае отражает “синхронность”. Однако это не означает “одновременность” событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле). При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.

    Применение теории игр для принятия стратегических управленческих решений

    В качестве примеров здесь можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д. Положения данной теории в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.

  • Инструментарий теории игр особенно целесообразно применять, когда между участниками процесса существуют важные зависимости в области платежей . Ситуация с возможными конкурентами приведена на рис. 2.

    Квадранты 1 и 2 характеризуют ситуацию, когда реакция конкурентов не оказывает существенного влияния на платежи фирмы. Это происходит в тех случаях, когда у конкурента нет мотивации (поле 1 ) или возможности (поле 2 ) нанести “ответный удар”. Поэтому нет необходимости в детальном анализе стратегии мотивированных действий конкурентов.

    Аналогичный вывод следует, хотя и по другой причине, и для ситуации, отражаемой квадрантом 3 . Здесь реакция конкурентов могла бы изрядно воздействовать на фирму, но поскольку ее собственные действия не могут сильно повлиять на платежи конкурента, то и не следует опасаться его реакции. В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.

    Лишь ситуация, показанная в квадранте 4 (возможность ответных шагов рыночных партнеров), требует использования положений теории игр. Однако здесь отражены лишь необходимые, но недостаточные условия, чтобы оправдать применение базы теории игр для борьбы с конкурентами. Бывают ситуации, когда одна стратегия безусловно доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль “первопроходца” оказывается столь значительной, что всем другим “игрокам” остается только быстрее активизировать инновационную деятельность.

  • Тривиальным с позиций теории игр примером “доминирующей стратегии” является решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке (например, IВМ на рынке персональных компьютеров в начале 80-х годов). Другое предприятие, действующее, к примеру, на рынке периферийного оборудования для ЭВМ, обдумывает вопрос о проникновении на рынок персональных компьютеров с переналадкой своего производства. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Игровая ситуация с указанием платежей показана в виде дерева на рис.3.

    Та же самая игровая ситуация может быть представлена и в нормальной форме (рис.4). Здесь обозначены два состояния – “вступление/дружественная реакция” и “невступление/ агрессивная реакция”. Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном – 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.

    Подобное рациональное равновесие характерно для “частично усовершенствованной” игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор “лучшего” хода на последнем этапе игры, затем выбирается “лучший” ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.

    Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. В связи с объявлением о подготовительных планах последней к вступлению на рынок состоялось “кризисное” совещание руководства IВМ, на котором были проанализированы мероприятия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок.

    Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны.

    Это свидетельствует, что компаниям полезно в эксплицитном виде обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход “невступление”, если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход “невступление” при вероятности агрессивного ответа 0,5.

  • Следующий пример связан с соперничеством компаний в области технологического лидерства. Исходной является ситуация, когда предприятие 1 ранее обладало технологическим превосходством, но в настоящее время располагает меньшими финансовыми ресурсами для научных исследований и разработок (НИР), чем его конкурент. Оба предприятия должны решить вопрос, попытаться ли с помощью крупных капиталовложений добиться доминирующего положения на мировом рынке в соответствующей технологической области. Если оба конкурента вложат в дело крупные средства, то перспективы на успех у предприятия 1 будут лучше, хотя оно и понесет большие финансовые расходы (как и предприятие 2 ). На рис. 5 эта ситуация представлена платежами с отрицательными значениями.

    Для предприятия 1 лучше всего было бы, если бы предприятие 2 отказалось от конкуренции. Его выгода в таком случае составила бы 3 (платежа). С большой вероятностью предприятие 2 выиграло бы соперничество, когда предприятие 1 приняло бы урезанную программу инвестиций, а предприятие 2 – более широкую. Это положение отражено в правом верхнем квадранте матрицы.

    Анализ ситуации показывает, что равновесие наступает при высоких затратах на НИР предприятия 2 и низких предприятия 1 . При любом другом раскладе у одного из конкурентов появляется резон отклониться от стратегической комбинации: так, для предприятия 1 предпочтителен сокращенный бюджет, если предприятие 2 откажется от участия в соперничестве; в то же время предприятию 2 известно, что при низких затратах конкурента ему выгодно инвестировать в НИР.

    Предприятие, имеющее технологическое преимущество, может прибегнуть к анализу ситуации на базе теории игр, чтобы в конечном счете добиться оптимального для себя результата. С помощью определенного сигнала оно должно показать, что готово осуществить крупные затраты на НИР. Если такой сигнал не поступил, то для предприятия 2 ясно, что предприятие 1 выбирает вариант низких затрат.

    О достоверности сигнала должны свидетельствовать обязательства предприятия. В данном случае это может быть решение предприятия 1 о закупке новых лабораторий или найме на работу дополнительного научно-исследовательского персонала.

    С точки зрения теории игр подобные обязательства равнозначны изменению хода игры: ситуация одновременного принятия решений сменяется ситуацией последовательных ходов. Предприятие 1 твердо демонстрирует намерение пойти на крупные затраты, предприятие 2 регистрирует этот шаг и у него нет больше резона участвовать в соперничестве. Новое равновесие вытекает из расклада “неучастие предприятия 2 ” и “высокие затраты на НИР предприятия 1 ”.

  • К числу известных областей применения методов теории игр следует отнести также ценовую стратегию, создание совместных предприятий, расчет времени разработки новой продукции.

    Важный вклад в использование теории игр вносят экспериментальные работы . Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат импульсом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам целесообразно сотрудничать и добиваться лучших для себя результатов.

    Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации “выигрыш/выигрыш”. Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.

    Проблемы практического применения
    в управлении

    Следует, однако, указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

    Во-первых, это тот случай, когда у предприятий сложились разные представления об игре, в которой они участвуют, или когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно оперировать сопоставлением подобных случаев с учетом определенных различий.

    Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

    В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Легко представить более сложную ситуацию проникновения на рынок, чем та, которая рассмотрена выше. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

    Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

    Отнюдь не бесспорно и принципиальное, лежащее в основе теории игр предположение о так называемом “общем знании”. Оно гласит: игра со всеми правилами известна игрокам и каждый из них знает, что все игроки осведомлены о том, что известно остальным партнерам по игре. И такое положение сохраняется до конца игры.

    Но чтобы предприятие в конкретном случае приняло предпочтительное для себя решение, данное условие требуется не всегда. Для этого часто достаточны менее жесткие предпосылки, например “взаимное знание” или “рационализируемые стратегии”.

    В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

  • Статьи по теме: