Виртуальная реальность на службе у музея. Загадка виртуальной реальности

Это новое захватывающее направление в разработке приложений. Оно знаменует собой новые форматы сторителлинга и более действенные способы передачи эмоций и ощущений.

Если раньше для создания подобных приложений требовалось дорогое оборудование и специальные навыки, то сейчас разработка виртуальной реальности стала доступна благодаря интуитивно понятным инструментам и технике, которую можно найти в ближайшем магазине электроники. В этом руководстве мы разберём, как создать видео-приложение с обзором в 360 градусов для Android за десять минут. Навыки программирования не требуются.

Что понадобится

Телефон с гироскопом под управлением Android KitKat или более новой версии.

Unity3D — кроссплатформенный игровой движок версии 5.6 и выше.

Видео с обзором в 360 градусов.

Как создать приложение?

Если обычное видео ограничено прямоугольной рамкой, то панорамное имеет форму сферы. Поэтому для начала создадим сферический экран, на который будет спроецировано видео с обзором в 360 градусов. Игрок (или наблюдатель) будет находиться внутри этой сферы и сможет смотреть видео в любом направлении.

Шаг 1: Построить сферу ?

Создадим новый Project в Unity или новую Scene, если хотим интегрировать видеоплеер в уже существующий проект. Считайте, что Scene - это один уровень в игре, а Project - вся игра.

Поместите сферу (3D object → Sphere) радиуса 50 (Scale = 50, 50, 50) в центр Scene (Position = 0, 0, 0). Установите позицию камеры на 0, 0, 0. Камера - это глаза игрока: если поместить её не в центр, то видео будет искажённым.

Поместив камеру внутрь сферы, мы больше не видим её на сцене. Так происходит из-за того, что большинство игровых движков не отображает внутреннюю сторону 3D-объектов, так как нам почти никогда не нужно её видеть, а значит можно не тратить ресурсы на отрисовку.

Шаг 2: Перевернуть нормали сферы ?

В нашем случае нужно смотреть на сферу изнутри, поэтому мы вывернем её наоборот.

В Unity сферы на самом деле являются многогранниками, составленными из тысяч крошечных граней. Их внешние стороны видимы, а внутренние - нет. Чтобы увидеть сферу изнутри, необходимо перевернуть эти грани. В терминах трёхмерной геометрии такая трансформация называется переворачиванием нормалей.

Применим программу Shader к Material сферы. Материалы в Unity контролируют внешний вид объектов. Шейдеры - это небольшие скрипты, которые рассчитывают цвет каждого рендерированного пикселя, основываясь на информации о материале и освещении.

Создадим новый Material для сферы, к нему применим Shader, код для которого можно скопировать отсюда . Этот шейдер вывернет каждый пиксель сферы, и изнутри сфера будет выглядеть как большой белый шар.

Шаг 3: Спроектировать панорамное видео внутрь сферы?

Импортируйте в проект видео с обзором в 360 градусов формата mp4, перенесите его на сферу. Появится компонент Video Player, и видео будет готово к воспроизведению. В окне этого компонента можно установить бесконечный повтор и отрегулировать настройки звука.

Прим. ред. Если у вас нет собственного видео такого типа, можно использовать чужие заготовки, свободно распространяемые в Интернете.

Шаг 4: Настроить поддержку Google Cardboard ?

Используя GoogleVR SDK, мы создадим стереоскопическое изображение. Совокупность эффекта рыбьего глаза, применённого к обеим частям разделённого наполовину экрана, и искажения пластиковых линз Google Cardboard создаёт иллюзию глубины картинки и погружения в виртуальную реальность.

Для того чтобы добавить GoogleVR SDK к проекту, скачайте и импортируйте плагин . Далее скорректируйте настройки Android:

  1. В верхнем меню выберите File → Build Settings . Добавьте сцену, если она еще не была добавлена, а из предлагаемых платформ выберите Android.
  2. Нажмите на Switch Platform . Переключение платформы займёт некоторое время.
  3. Нажмите на Player Settings . На панели инструктора появятся компоненты.

В окне Player Settings в секции Other settings :

  • Отметьте галочкой Virtual Reality Supported . В выпавшем окне Virtual Reality SDKs нажмите на +, добавьте в список Cardboard .
  • Выберите для вашего приложения уникальное имя и введите его в поле Bundle Identifier . Уникальные имена приложений под Android обычно имеют форму обратного доменного имени, например, com.example.CoolApp . Подробнее про это можно почитать в официальной документации и в Википедии .
  • В меню Minimal API Level выберите Android 4.4 Kit Kat (API Level 19) .

В панели Project Browser в папке GoogleVR/Prefabs выберите элемент GvrViewerMain и перетащите его на сцену. Задайте ему такую же позицию, как у центра сферы: 0, 0, 0 .

Префаб GvrViewerMain контролирует все настройки режима виртуальной реальности, например, адаптацию экрана к линзам Cardboard. Он также получает данные с гироскопа телефона для отслеживания поворотов и наклонов головы. При повороте головы Camera в видеоплеере тоже повернётся.

Шаг 5: Запустить приложение на Android ?

Это можно сделать двумя разными способами:

  • Выберите File → Build Settings . С помощью USB-кабеля подключите телефон к компьютеру, включите отладку по USB и нажмите Build & Run . Приложение загрузится сразу на телефон.
  • Или нажмите Build only . Приложение не загрузится на телефон, но зато сгенерируется в APK-файл, который можно отправить другим людям или выложить в магазин мобильных приложений.

В течение процесса сборки вас могут попросить выбрать корневую папку Android SDK. В этом случае скачайте Android SDK и укажите расположение его папки.

Осталось только запустить приложение и вставить телефон в Cardboard. Теперь вы можете испытать погружение в виртуальную реальность с обзором в 360 градусов у себя дома.

Что дальше

Поздравляем, вы создали видео-приложение с обзором в 360 градусов! Теперь вы на шаг ближе к разработке видео-приложения виртуальной реальности. Да, между ними есть разница. В первом случае наблюдатель может только смотреть в любом направлении. Во втором случае добавляется интерактивность, то есть контроль над объектами.

Приложение, которое вы только что создали, может послужить отправной точкой в построении более разнообразной виртуальной реальности. Например, в Unity можно наложить на верхний слой видео 3D-объекты и эффекты частиц.

Вы также можете попробовать поместить внутрь панорамного видеоплеера трёхмерное изображение некоторой окружающей обстановки и использовать видеоплеер как skybox. Для навигации пользователя по созданному окружению можно использовать этот

Система образования – довольно консервативна. Несмотря на множество инновационных разработок и открытий, образовательный сектор практически не использует революционных методов обучения, в большинстве своем предпочитая «классику». Но информационные технологии предлагают новые правила для этой сферы – обучение в формате дополненной реальности.

Обучение в формате виртуальной реальности

Прежде всего, стоит отметить, что дополненная и виртуальная реальность – это не одно и то же. Для создания виртуальной реальности понадобятся или очки, которые нарисуют новый мир. Компоненты для создания виртуальной реальности (мощное и современное «железо», очки) достаточно дорого стоят. Еще одним камнем преткновения для внедрения виртуальной реальности в сферу образования может стать «потеря контакта» учителя-ученика: школьник путешествует в виртуальном мире, забывая о реальности в классной комнате.

С дополнительной реальностью дела обстоят на порядок проще. Дополненная реальность – инновационный способ демонстрации учебного материала. Унылая и весьма «заезженная» картинка оживает. Это не только не препятствует, но и в большей степени способствует (заинтересовывает) взаимодействию между учениками и учителем.


Разработка AR (анг. augmented reality) достаточно молода – с момента создания не прошло еще 10 лет, и массово в системе образования (даже развитых стран) пока не используется. Свое широкое применение она нашла в музейном деле («оживление» предметов) и уличной рекламе.
Чтобы привести систему в действие не потребуется хитроумных и дорогостоящих гаджетов: камера (подойдет даже камера в смартфоне), экран (телевизор, планшет, телефон), программное обеспечение, совместимое с имеющимся устройством, и маркер AR. В качестве маркера может быть использован чертеж, рисунок, графическое изображение или реальный объект (постройка, открытка или шоколадка). Приложение идентифицирует предложенный маркер и воспроизводит на экране графический объект или анимацию.

VR делает обучение увлекательным

Как это происходит на практике. На парте перед учеником лежит обычный учебник. На иллюстрации в книге направляется камера гаджета с установленным ПО. Программа распознает книжные рисунки как маркер, и вместо плоского рисунка атома появляется трехмерный объект, который можно рассмотреть со всех сторон. Уроки с дополненной реальностью позволяют ученикам становится частью происходящих процессов как микро- (молекулярный уровень), так и макромире (на уровне солнечной системы и галактик). Едва ли кто-то захочет прогуливать такие уроки физики.

Также многим людям гораздо легче воспринимать информацию, полученную в зрительном контакте, а не сквозь формулу или чертеж. Таким образом данная технология поможет без лишних усилий и серьезных вложений преодолеть барьер получения знаний для школьников и студентов. AR будет полезна при развитии пространственного мышления.

От разработок к реальности.

Стартап HoloGroup (Россия) сегодня активно работает над внедрением технологии дополненной реальности в образовательные будни школьников.
HoloGroup стала лауреатом независимой премии «Время инноваций-2016» в категории «Компьютерные и беспроводные технологии» в номинации «Открытие года».

Обучение в формате виртуальной реальности от HoloStydy ©photo holo.group

Команда специалистов работает над разработкой уроков в формате AR, адаптированных под Microsoft HoloLens (разработанное ими приложение). С помощью данного приложения можно уже сегодня познакомится с устройством нашей планеты.
Дополненная реальность превращает монотонные уроки в захватывающее приключение.

Сегодня прогресс достиг действительно небывалых высот, а новое поколение способно использовать такие возможности, о которых еще 10-15 лет назад люди лишь мечтали. То, что было мистикой и волшебством, сегодня стало техническим прогрессом. Один из таких моментов – это виртуальная реальность. Сегодня мы поговорим о том, что такое VR и как ее используют в различных сферах.

Определение виртуальной реальности

Виртуальная реальность – это созданный с помощью технического и программного обеспечения виртуальный мир, передающийся человеку через осязание, слух, а также зрение и, в некоторых случаях, обоняние. Именно объединение всех этих воздействий на чувства человека в сумме носит название интерактивного мира

Она, VR, способна с высокой точностью имитировать воздействия окружающей виртуальной действительности на человека, но для того, чтобы создать действительно правдоподобный компьютерный синтез из реакций и свойств в рамках интерактивного мира, все процессы синтеза просчитываются, анализируются и выводятся в качестве поведения в реальном времени.

Использование виртуальной реальности многогранно: в 99 процентах случаев одушевленным и неодушевленным предметам, созданным при помощи такой технологии, присущи точно такие свойства, поведение и движение, какие есть у их настоящих прототипов. При этом пользователь в состоянии оказывать на все одушевленные и неодушевленные объекты влияние согласно реальным законам физики (если игровым процессом не предусмотрены другие законы физики, что случается крайне редко).

Принцип работы

Многим интересно, как именно действует технология. Вот три главных компонента, которые используются практически при любом взаимодействии с виртуальной средой:

  1. Голова . Виртуальная среда внимательно, при помощи специализированной гарнитуры, отслеживает положение головы. Так, гарнитура двигает картинку согласно тому, в какие из сторон и когда пользователь поворачивает свою голову – в бок, вниз или вверх. Такая система официально называется шестью степенями свободы.
  2. Движения . В более дорогих модификациях технического обеспечения отслеживаются и движения пользователя, при этом виртуальная картинка будет двигаться согласно им. Речь идет здесь не об играх, в которых пользователь просто находится на месте и взаимодействует с окружением, но о тех, где он перемещается в виртуальном пространстве.
  3. Глаза . Еще один основополагающий в реальности датчик анализирует то направление, в котором смотрят глаза. Благодаря этому игра позволяет пользователю погрузиться в интерактивную реальность более глубоко.

Эффект полного присутствия

Уже по термину полного присутствия понятно, о чем именно идет речь: мир – это виртуальная реальность. Это значит, что пользователь будет ощущать себя именно там, где находится игра, и он может взаимодействовать с ней. Пользователь поворачивает голову – персонаж тоже поворачивает голову, человек шагает в своей комнате – игрок движется в интерактивной реальности. До сих пор идут споры — возможно ли

The Leap – отслеживание пальцев и кистей

Эффект от полного присутствия достигается за счет устройства The Leap. Это устройство, использующее сложную систему отслеживания каждого движения, все еще остается частью очень дорогих и ТОПовых шлемов. Однако алгоритм работы достаточно прост, и он присутствует в немного измененном виде в другом устройстве, а именно в шлеме HTC Vive.

Как контроллер, так и шлем в HTC Vive, оснащены множеством фотодиодов – небольших приборов, преобразовывающих световую энергию в электрическую.

Важный момент! Вообще человек ежедневно сталкивается с фотодиодами и их работой. Как пример, это фотодиод, отвечающий за освещение смартфона. Фотодиод определяет, сколько именно освещения падает на него, и, на основе этих данных, регулирует уровень яркости

Такой же принцип полного присутствия используется и в шлеме. В комплекте со стандартным ВР-шлемом идут две станции, которые через временные интервалы пускают пару лучей – это горизонтальный и вертикальный лучи. Они пронизывают комнату и добираются до фотодиодов на устройстве шлема и контроллера. После этого фотодиоды начинают свою работу, и за несколько секунд происходит обмен информационными данными, в ходе которого датчики передают положение контроллеров и шлема.

В этом заключается алгоритм создания полного присутствия.

Какие существует разновидности VR

Официально сейчас существует три разновидности виртуальной реальности:

  1. Имитация и компьютерное моделирование.
  2. Мнимая деятельность.
  3. Киберпространство и аппаратные средства.

VR шлемы

Главная разница между этими тремя гаджетами заключается лишь в компаниях-производителях. В остальном же они похожи. Все три шлема отличаются портативностью и обеспечением полного погружения в игровой процесс.

Плюсы и минусы виртуальной реальности

Плюсы:

  1. Возможность полностью окунуться в интерактивное измерение.
  2. Получение новых эмоций.
  3. Профилактика стресса.
  4. Создание электронных информационных и обучающих ресурсов.
  5. Проведение конференций.
  6. Создание объектов культурного наследия.
  7. Возможность визуализации различных объектов и физических явлений.
  8. Возможность для каждого перейти на новый уровень развлечений.

Минусы:

К минусам можно отнести следующие моменты:

  1. Зависимость.
  2. Еще один явный минус: виртуальная реальность и ее психологическое воздействие на человека – оно далеко не всегда бывает позитивным, так как есть риск слишком сильно погрузиться в виртуальным мир, что иногда влечет за собой проблемы в социальной и других сферах жизни.
  3. Высокая стоимость устройств.

Применение виртуальной реальности

VR можно использовать в таких сферах, как:

  1. Обучение . Сегодня интерактивная реальность позволяет смоделировать тренировочную среду в тех сферах и для тех занятий, для которых необходимой и важной является предварительная подготовка. Как пример, это может быть операция, управление техникой и другие сферы.
  2. Наука . VR дает возможность значительно ускорить исследования как атомного, так и молекулярного мира. В мире компьютерной реальности человек способен манипулировать даже атомами так, словно это конструктор.
  3. Медицина . Как и было отмечено, при помощи VR можно тренировать и обучать медицинских специалистов: проводить операции, изучать оборудование, улучшать профессиональные навыки.
  4. Архитектура и дизайн . Что может быть лучше, чем показать заказчику макет нового дома или любого другого строительного объекта при помощи такой реальности? Именно она позволяет создавать эти объекты в виртуальном пространстве, в полном размере, для демонстрации, тогда как раньше использовались ручные макеты и воображение. Это касается не только строительных объектов, но и техники.
  5. Развлечение . VR безумно популярен в игровой среде. Причем, спросом пользуются как игры, так и культурные мероприятия и туризм.

VR – вредно это или нет?

Пока что можно отметить, что никаких глобальных исследований в этой области не проводилось, однако первые выводы сделать уже можно. Так как VR еще только-только разрабатывается (и это действительно так), у многих могут появляться неприятные ощущения при продолжительном использовании этой технологии. В частности, человек будет ощущать головокружение и тошноту.

Пока что нет никаких доказательств того, что . Отрицательный эффект, несомненно, есть, однако он не настолько велик, чтобы бить тревогу. Поэтому пока неизвестно, виртуальная реальность, что это такое – вред или польза.

VR – что ждет в будущем?

Сегодня виртуальная реальность не до конца доделана, поэтому могут появляться неприятные ощущения. В будущем же появится множество устройств, копий и аналогов, которые не будут отрицательно действовать на человеческий организм и психику.

Также устройства VR смогут решить проблемы с потреблением информационных данных, а сеансы станут такими же стандартными и обыденными, как и обычные игры на компьютере или приставках в наши дни.

Вывод

Виртуальная реальность – пока что бездонная пропасть для исследования и улучшения алгоритмов работы. Сегодня технологии продвигаются очень быстро, поэтому можно с уверенностью сказать, что в ближайшем будущем рыночная стоимость комплекта будет по карману человеку со средним достатком.

Менеджер по продукту сайт пообщался с командой Pixonic: про создание игры для виртуальной реальности, эксперимент с разработкой на iMac Pro и будущее VR.

В закладки

Российская компания Pixonic была основана в 2009 году. В студии работает более 200 сотрудников в четырех офисах - в Москве, Берлине, Белгороде и на Кипре. «Мы расширяемся, и нам уже не хватает места, поэтому скоро хотим переехать в новый офис», - рассказывает стратегический директор Pixonic Никита Гук во время экскурсии по московскому офису компании.

Поводом для нашей встречи стали два эксперимента, которые провела студия. Во-первых, команда выпустила свою первую игру для виртуальной реальности и согласилась рассказать подробности о её разработке. Во-вторых, старший VR-разработчик компании попробовал использовать для создания игры iMac Pro - компьютер, который Apple позиционирует как мощный инструмент для разработчиков приложений в виртуальной реальности.

War Robots для виртуальной среды

«Когда появились первые разговоры о виртуальной реальности, мы попытались изучить аудиторию VR-игр, но быстро поняли, что на этом рынке вообще ничего непонятно: сколько игроков, как их найти и готовы ли они вообще платить, - начинает беседу Никита Гук. - Поэтому мы решили провести эксперимент и самостоятельно собрать интересующие нас данные».

Экспериментальный проект команда решила создать на базе главного блокбастера компании - free-to-play-игры War Robots, в которой пользователь становится пилотом боевого робота. Он может играть в как в одиночку, так и в составе команды. Для победы в War Robots необходимо либо удержать от захвата как можно больше территории, либо полностью уничтожить отряд соперника.

War Robots - самая кассовая игра за всю историю компании. В 2016 году Google назвала её одним из самых захватывающих проектов на своей мобильной платформе. В 2018 году приложение преодолело отметку в 80 млн скачиваний, а его ежедневная аудитория превысила 1 млн игроков.

«Мы хотели проверить, воспримут ли War Robots с такой графикой в виртуальной реальности. Либо же нужно создавать нечто особенное с wow-эффектом исключительно под Oculus», - рассказывает Гук.

Pixonic выделила для проекта команду из 18 человек, которые за почти шесть месяцев создали первую версию игры для виртуальной реальности - War Robots VR. Как и в мобильной версии игры, пользователю нужно отбиваться от атак других роботов, находясь в кабине робота.

Трейлер игры War Robots VR

Особенности разработки под VR

В процессе разработки VR-игра проходит через те же этапы, что и обычная игра для мобильной платформы или компьютера - создание прототипа, продумывание геймплея, прорисовка графики, разработка и прочее.

Так как у разработчиков Pixonic не было богатого опыта разработки VR-игр, они начали с создания очень грубой модели кабины, состоящей из простых прямоугольников.

«Так мы смогли понять, как пользователь будет управлять роботом в VR, какого масштаба должна быть кабина, на каком расстоянии расположить здания и другие объекты, с какой скоростью игрок должен перемещаться, чтобы ему было комфортно и не скучно. Когда ты смотришь через шлем, у тебя совершенно другие ощущения от игры, чем если просто смотреть на нее через экран», - рассказывает старший VR-разработчик компании Артем Клиновицкий.

Артем Клиновицкий

Главная проблема, с которой не сталкиваются разработчики мобильных приложений, но которую приходится постоянно решать создателям VR-игр - укачивание человека в шлеме виртуальной реальности. «У нашего бывшего продюсера Артура Мостового при разработке даже была гипотеза о том, что VR можно использовать для тренировки вестибулярного аппарата», - вспоминает Гук.

Человека начинает тошнить в тот момент, когда мозг получает от вестибулярного аппарата и глаз противоречащую друг другу информацию, поясняет Клиновицкий. Мозг думает, что в организм попал яд, и пытается от него избавиться. Поэтому при проектировании VR-игр критически важна естественность всего, что происходит перед глазами.

Отсюда и высокие технические требования к приложениям - всегда нужно помнить о производительности современных шлемов виртуальной реальности и оптимизировать код, чтобы в игре не было никаких задержек или лагов. В противном случае проблемы с графикой отражаются на самочувствии игрока.

Например, при разработке игр для смартфонов и компьютеров разработчики ориентируются на минимальное количество сменяемых кадров в секунду - FPS.

Для спокойной и не слишком динамичной игры на мобильном устройстве достаточно придерживаться значения 30 кадров в секунду. Для игры в виртуальной реальности минимальное значение FPS в несколько раз больше, чем на смартфоне или компьютере - например, для шлема HTC Vive оно составляет 90 FPS. При меньшем значении игрока начинает укачивать, он теряет ощущение присутствия в виртуальной среде и вскоре у него возникает непреодолимое желание покинуть игру.

Сложности в работе добавляет необходимость генерации изображений для правого и левого глаза в шлеме. Разработчикам приходится учитывать это, также как и разработчики шлемов оптимизируют этот процесс, чтобы системные требования к шлемам оставались приемлимыми.

Объекты, которые находятся на расстоянии трех метров от игрока, должны быть максимально проработанными, без «мыльных структур» и низкополигональных объектов, иначе игрока не будет покидать ощущение нереальности происходящего. Дальний план может быть лишен такого уровня детализации, так как для игрока он размыт - это, в том числе, помогает оптимизировать производительность.

Игрока в VR-очках ни в коем случае нельзя куда-то насильно тащить. В обычном шутере игрок нажимает на клавишу и персонаж бежит вперед - здесь всё нормально.

Но если перенести эту механику в VR, у игрока тут же возникнет полный диссонанс: вестибулярный аппарат мне говорит, что я стою на одном месте, но при этом я вижу, что двигаюсь.

Артем Клиновицкий

VR-разработчик

Все действия в виртуальной реальности как минимум должны быть предсказуемы для игрока, или, еще лучше, всегда инициализироваться им самим: «Для перемещения игрока лучше, чтобы он в виртуальной среде брал в руки какой-нибудь манипулятор - например, пульт управления, и "продвигал" себя в игре с его помощью. Тогда движения будут восприниматься более естественно».

«Если в обычной игре мы в любой момент можем отвязать камеру от игрока и показать всю сцену с разных углов, то в VR мы всегда должны понимать, что смотрим на всё только от первого лица, какой бы ни была игра», - объясняет Артем Клиновицкий.

При этом нельзя управлять направлением взгляда пользователя - игрок всегда самостоятельно решает, куда ему смотреть. Разработчикам приходится создавать различные интерфейсные подсказки и звуковые эффекты, которые говорят пользователю «Посмотри назад, там происходит что-то важное».

В отличие от обычной экранной игры интерфейс не может представлять из себя плоскость, которая все время «висит» перед глазами игрока. В VR интерфейс приложения приходится вписывать в окружающее пользователя трехмерное пространство, чтобы он не мешал взгляду игрока и воспринимался естественно, рассказывает разработчик.

Скриншот игры War Robots VR

Несмотря на то, что Pixonic создавала VR-игру на основе своего мобильного хита, разработчики не могли просто перенести готовые объекты из War Robots. В обычной игре дым или огонь - это чаще всего простая плоскость с изображением. На экране смартфона или компьютера это почти не заметно, но если перенести такие плоскости в трехмерную среду, игрок сразу же заметит их двухмерность. Поэтому все эффекты приходится создавать практически заново, отмечают в Pixonic.

На чем разрабатывают VR-игры

Львиную часть проектов Pixonic разрабатывает в Unity - популярном игровом движке, который позволяет создавать приложения сразу для разных сред - смартфонов, компьютеров, консолей и, в том числе, шлемов виртуальной реальности.

Разработка в VR крайне требовательна к ресурсам компьютера. Большинство сотрудников студии работает на ПК - члены команды могут заказывать любую конфигурацию компьютера, необходимую для комфортной работы. «Если кто-то постоянно работает со сложной графикой, мы можем собрать для него мощную станцию с четырьмя видеокартами. В этом вопросе у нас нет ни лимитов, ни ограничений - главное, чтобы было комфортно работать», - рассказывает Никита Гук.

Разработка War Robots VR велась в Unity на ПК. Однако в качестве эксперимента старший VR-разработчик студии попробовал перейти на iMac Pro - компьютер, который Apple позиционирует как мощный инструмент для разработчиков приложений в виртуальной реальности.

По словам Клиновицкого, переход с ПК на iMac для него оказался бесшовным - Unity для macOS практически не отличается от версии для Windows: «Редактор кода идентичный. Остальные средства разработки так же не отличаются. Перейти было легко и быстро».

«Однако на моём ПК с топовой видеокартой производительность была лучше, чем на iMac Pro», - продолжает разработчик. По его словам, проблема заключается также в том, что программное обеспечение для работы с VR для iMac еще находится в стадии разработки.

Почти все разработчики Pixonic работают с двумя большими мониторами, стоящими рядом: на одном выводят редактор кода, на другом - превью игры или другие рабочие инструменты. В случае с 27-дюймовым iMac разработчику Pixonic сложно было подобрать равноценный по качеству и размеру внешний монитор, поэтому приходилось часто переключать окна, что снижало эффективность работы, отмечает VR-разработчик.

При этом рабочая станция Apple лучше справлялась с параллельными процессами при разработке, что позволяло работать одновременно в нескольких приложениях вне зависимости от нагрузки: «В Unity есть такой процесс как запекание света - расчет света на карте. Обычно это долгий процесс, который для большой карты может занимать несколько часов, а иногда и дней. На iMac он шел быстрее благодаря хорошему менеджменту процессов. При этом несмотря на сильную загруженность процессора ты все равно можешь параллельно работать с остальными приложениями. На Windows в таких ситуациях сразу всё умирает, и ты идешь пить кофе».

Клиновицкий считает, что iMac Pro больше подходит для левел-дизайнеров и тех, кто работает с графикой для игр: «Сцена в шлеме виртуальной реальности всегда выглядит иначе, чем когда ты смотришь на нее на экране монитора, поэтому для дизайнеров важны удобные инструменты для редактирования в VR».

Обычно после каждой правки на компьютере им приходится надевать шлем, чтобы посмотреть на результат. Однако современные средства разработки - такие как Unreal - позволяют редактировать графику прямо от первого лица, находясь в виртуальной реальности. Дизайнер включает режим редактирования сцены, надевает шлем и при помощи контролеров Oculus меняет расположение объектов, цвет и так далее.

Рынок в зачаточной стадии

Эксперимент с War Robots VR показал, что рынок игр для виртуальной реальности все ещё находится в зачаточной стадии, считает Никита Гук: «Он не похож на игровую индустрию в привычном понимании. VR - это шоу-кейс интересных технологий, с которыми можно поэкспериментировать в своём продукте ».

Помимо игровых компаний большой интерес к VR проявляет рынок развлечений: с помощью шлемов покупателям показывают, как будут выглядеть проектируемые здания, создают квесты и проводят выставки современного искусства в виртуальной реальности.

Вероятно, такие точечные эксперименты помогут в будущем преодолеть высокий входной порог для пользователя - сейчас помимо хорошего шлема покупатель должен приобрести мощный компьютер, способный мгновенно обрабатывать сложную графику.

Другой барьер для рынка - отсутствие крупных компаний. Пока рынок состоит из небольших лейблов, которые по отдельности проводят маленькие эксперименты. Однако крупный бренд сможет выделить многомиллионные бюджеты на маркетинг VR-игр и привлечь внимание игроков к технологии, считает Гук.

В играх мы в первую очередь смотрим на то, какого охвата сможем добиться, так как хотим подарить крутые эмоции как можно большему числу игроков. Мы смотрим на сформировавшиеся рынки, чтобы понять, какая у них аудитория, можно ли завоевать определенный её процент, и в этом случае рынок становится интересным для нас. Но мы также не ограничены такими рамками и можем попробовать что-то новое.

Никита Гук

Стратегический директор Pixonic

«Мы делали War Robots VR на чистом альтруизме, потому что было очевидно, что в ближайшее время вряд ли крупная разработка в VR сможет отбить инвестиции, - рассказывает Никита Гук. - Главный показатель успешности проекта для Pixonic - его масштабируемость. Поэтому, например, мы не считаем успешным проект, приносящий миллион долларов в месяц, но при этом многократно не масштабирующийся ».

Другой показатель, на который смотрят в Pixonic при запуске игр - это их потенциал - будут ли пользователи возвращаться в неё вновь и вновь, захотят ли играть на одной и той же карте много раз - как в Counter Strike. «Хочется, чтобы примерно так же было в VR, однако пока на этом рынке нет таких успешных примеров», - заключает стратегический директор Pixonic.

Будущее и VR

Отвечая на вопрос о главных проблемах VR-игр, разработчик Pixonic отмечает низкое разрешение современных шлемов. «Когда ты видишь перед глазами большую картинку, например, из игры, то быстро забываешь про довольно крупные пиксели на экране. Но когда ты видишь текст, это сразу бросается в глаза».

Для комфортной работы в VR разрешение шлемов должно достигать 8К - причём для каждого экрана, считает Клиновицкий. Однако для генерации таких изображений понадобятся куда более мощные компьютеры, которые пока что доступны не всем пользователям.

Будущее VR, конечно, не в шлемах. Шлемы - это лишь промежуточный этап на пути к виртуальной реальности. Будущее VR наступит, когда мы сможем подключаться непосредственно к мозгу, когда тебе не будут нужны никакие промежуточные устройства. Тогда этот рынок выстрелит, и всё будет как в фильме «Первому игроку приготовиться».

Артем Клиновицкий

Одним из наиболее популярных направлений развития виртуальной и дополненной реальности является образование. Существует много различных вариантов применения современных технологий в этой области — от простых школьных туров по Древнему Египту на уроках географии до обучения специалистов для работы на сверхскоростном поезде или на космической станции. Своими замечаниями о том, какими возможности обладает виртуальная реальность в образовании, поделился Дмитрий Кириллов, руководитель VRAR lab и Cerevrum Inc .

Плюсы использования VR в образовании

Использование виртуальной реальности открывает много новых возможностей в обучении и образовании, которые слишком сложны, затратны по времени или дороги при традиционных подходах, если не всё одновременно. Можно выделить пять основных достоинств применения AR/VR технологий в образовании.

Наглядность. Используя 3D-графику, можно детализированно показать химические процессы вплоть до атомного уровня. Причем ничто не запрещает углубиться еще дальше и показать, как внутри самого атома происходит деление ядра перед ядерным взрывом. Виртуальная реальность способна не только дать сведения о самом явлении, но и продемонстрировать его с любой степенью детализации.

Безопасность. Операция на сердце, управление сверхскоростным поездом, космическим шатлом, техника безопасности при пожаре — можно погрузить зрителя в любое из этих обстоятельств без малейших угроз для жизни.

Вовлечение. Виртуальная реальность позволяет менять сценарии, влиять на ход эксперимента или решать математическую задачу в игровой и доступной для понимания форме. Во время виртуального урока можно увидеть мир прошлого глазами исторического персонажа, отправиться в путешествие по человеческому организму в микрокапсуле или выбрать верный курс на корабле Магелланна.

Фокусировка. Виртуальный мир, который окружит зрителя со всех сторон на все 360 градусов, позволит целиком сосредоточиться на материале и не отвлекаться на внешние раздражители.

Виртуальные уроки. Вид от первого лица и ощущение своего присутствия в нарисованном мире — одна из главных особенностей виртуальной реальности. Это позволяет проводить уроки целиком в виртуальной реальности.

Форматы VR в образовании

Использование новых технологий в образовании предполагает, что учебноый процесс должен быть перестроен соответствующим образом.

ОЧНОЕ ОБРАЗОВАНИЕ

Виртуальные технологии предлагают интересные возможности для передачи эмпирического материала. В данном случае классический формат обучения не искажается, так как каждый урок дополняется 5–7-минутным погружением. Может быть использован сценарий, при котором виртуальный урок делится на несколько сцен, которые в включаются в нужные моменты занятия. Лекция остается, как и прежде, структурообразующим элементом урока. Такой формат позволяет модернизировать урок, вовлечь учеников в учебный процесс, наглядно иллюстрировать и закрепить материал.

ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

При дистанционном обучении ученик может находиться в любой точке мира, равно как и преподаватель. Каждый из них будет иметь свой аватар и лично присутствовать в виртуальном классе: слушать лекции, взаимодействовать и даже выполнять групповые задания. Это позволит придать ощущение присутствия и устранить границы, которые существуют при обучении через видеоконференции. Также преподаватель сможет понять, когда ученик решит покинуть урок, так как шлемы Oculus Rift и HTC Vive оборудованы датчиком освещения, позволяющим распознать, используется шлем в данный момент или нет.

СМЕШАННОЕ ОБРАЗОВАНИЕ

При наличии обстоятельств, мешающих посещать занятия, ученик может делать это удаленно. Для этого класс должен быть оборудован камерой для съемки видео в формате 360-градусов с возможностью трансляции видео в режиме реального времени. Ученики, посещающие урок дистанционно, смогут наблюдать происходящее в классе от первого лица (например, прямо со своего места), видеть своих одноклассников, общаться с преподавателем и принимать участие в совместных уроках.

САМООБРАЗОВАНИЕ

Любой из разработанных образовательных курсов может быть адаптирован для самостоятельного изучения. Сами уроки могут размещаться в онлайн-магазинах (например, Steam, Oculus Store, App Store, Google Play Market), чтобы у всех была возможность осваивать или повторять материал самостоятельно.

Минусы использования VR в образовании

Однако пока использование технологий и сами устройства не будут максимально «отточены», будут существовать минусы и потенциальные проблемы использования виртуальной реальности в образовании.

Объем. Любая дисциплина довольно объемна, что требует больших ресурсов для создания контента на каждую тему урока — в виде полного курса или десятков и сотен небольших приложений. Компании, которые будут создавать такие материалы, должны быть готовы заниматься разработкой довольно продолжительное время без возможности ее окупить до выхода полноценных наборов уроков.

Стоимость. В случае с дистанционным обучением нагрузка по покупке устройства виртуальной реальности ложится на пользователя, или этим устройством может быть его телефон. Но образовательным учреждениям понадобится закупать комплекты оборудования для классов, в которых будут проходить занятия, что также требует существенных инвестиций.

Функциональность. Виртуальная реальность, как и любая технология, требует использования своего, специфического языка. Важно найти верные инструменты для того, чтобы сделать контент наглядным и вовлекающим. К сожалению, многие попытки создания обучающих VR-приложений не используют все возможности виртуальной реальности и, как следствие, не выполняют своей функции.

Пример: урок физики в VR

Для того, чтобы проверить эффективность и жизнеспособность использования виртуальной реальности в образовании, компания VRAr lab разработала экспериментальный урок по физике. В исследовании приняли участие 153 человека: подростки 6-17 лет, их родители и родственники. После просмотра участников попросили ответить на три вопроса: насколько хорошо усваивается учебный материал, поданный таким образом; каково отношение детей к обучению в виртуальной реальности; какие школьные предметы (по мнению школьников) предпочтительны для создания уроков в виртуальной реальности.

Урок был посвящен теме электрического тока в простейшей электрической цепи. Надев очки, пользователь оказывался в комнате перед столом, на котором была визуализирована простейшая электрическая цепь. Далее пользователь попадал внутрь проводника, где ему предстояло изучить его строение (визуализация строения атома, кристаллической решетки, условная визуализация течения электрического тока в связке с источником питания). Урок рассчитан на шесть учеников, сопровождается лекцией учителя и длится от 5 до 7 минут.

После лекции респонденты заполнили анкеты.

Усвоение материала и отношение к урокам в VR

Респондентам было предложено ответить на три закрытых вопроса анкеты: какая из перечисленных частиц не является частицей атома; из чего состоит ядро атома; какая частица отвечает за передачу электрического заряда. Результат оказался отличным – лишь 8,5% респондентов не усвоили материал.

Что касается отношения к подобным урокам, то по данным VRAR lab, 148 респондентов из 153 (97,4%) желали бы и дальнейшего применения технологий виртуальной реальности на школьных уроках, причем в качестве дисциплин большинство указало физику и химию.

В целом, эксперимент, проведенный VRAR lab, показал успешность применения VR в образовании. Современные технологии, несмотря на долгий путь развития, еще молоды, но всё же виртуальная реальность – это следующий большой рывок в развитии сферы образования. И в ближайшее время нам предстоит увидеть множество интересных открытий в этой области.

Статьи по теме: