Основы теории игр в экономике. Теория игр и ее применение в экономике. Классическая задача в теории игр

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Тео́рия игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции . Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

История.

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение»(англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике. Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работе Йохана Хёйзинга «Homo Ludens» (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике.. говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепции Эрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные на трансакционном анализе. Понятие игры у Й.Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарах Г. П. Щедровицкого, основоположника организационно-деятельностного подхода. Во время Перестройки в СССР Г. П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ стал Московский методологический кружок (ММК).

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен. Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш, благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения «холодной войны», что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауманн , Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц , Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот.

Применение теории игр.

Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин «теория игр». Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге «Эволюция и теория игр». Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведения, высказывались ещё Платоном.

Описание и моделирование.

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх «Сороконожка», «Диктатор» участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, но лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

Нормативный анализ (выявление наилучшего поведения).

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра «Дилемма заключенного » позволяет привести ещё один контрпример. В «Дилемме заключенного » следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Типы игр

Кооперативные и некооперативные.

Игра называется кооперативной, или коалиционной , если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные.

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя », «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум » или «Диктатор ».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой.

Игры с нулевой суммой - особая разновидность игр с постоянной суммой , то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство .

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока , который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война .

Параллельные и последовательные.

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических , играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной , например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.

С полной или неполной информацией.

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка ». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим - совершенной информации . Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов.

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии . Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств .

Дискретные и непрерывные игры.

Большинство изучаемых игр дискретны : в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры.

Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом ). Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов .

по материалам wikipedia.org

Теория игр - теория математических моделей принятия оптимальных решений в условиях конфликта. Поскольку стороны, участвующие в большинстве конфликтов, заинтересованы в том, чтобы скрыть от противника свои намерения, принятия решений в условиях конфликта, как правило, происходит в условиях неопределенности. Наоборот, фактор неопределенности можно интерпретировать как противника субъекта, принимающего решение (тем самым принятие решений в условиях неопределенности можно понимать как принятие решений в условиях конфликта). В частности, многие утверждения математической статистики естественным образом формулируются как теоретико-игровые.

Теория игр - раздел прикладной математики, который используется в социальных науках (всего в экономике), биологии, политических науках, компьютерных науках (главным образом для искусственного интеллекта) и философии. Теория игр пытается математически зафиксировать поведение в стратегических ситуациях , в которых успех субъекта, делающего выбор зависит от выбора других участников. Если сначала развивался анализ игры, в которых один из противников выигрывает за счет других (игры с нулевой суммой), то впоследствии начали рассматривать широкий класс взаимодействий, которые были классифицированы по определенным критериям. На сегодняшний день «теория игр то вроде зонтика или универсальной теории для рациональной стороны социальных наук, где социальные можем понимать широко, включая как человеческих так не-человеческих игроков (компьютеры, животные, растения)» (Роберт Ауманн, 1987)

Эта отрасль математики получила определенное отражение в массовой культуре. В 1998 году американская писательница и журналисткаСильвия Назар опубликовала книгу о жизни Джона Нэша, нобелевского лауреата по экономике за достижения в теории игр, а в 2001 по мотивам книги снят фильм «Игры разума». (Таким образом, теория игр - одна из немногих отраслей математики в которой можно получить Нобелевскую премию). Некоторые американские телевизионные шоу, например, Friend or Foe , Alias или NUMBERS периодически используют в своих выпусках теорию игр.

Джон Нэш - математик,нобелевский лауреат известен широкой общественности благодаря фильму Игры разума.

Понятие теории игр

Логической основой теории игр является формализация трех понятий, входящих в ее определение и являются фундаментальными для всей теории:

  • Конфликт,
  • Принятие решения в конфликте,
  • Оптимальность принятого решения.

Эти понятия рассматриваются в теории игр в самом широком смысле. Их формализации отвечают содержательным представлением о соответствующих объектах.

Если назвать участников конфликта коалициями действия (обозначив их множество как D, возможные действия каждой из коалиции действия - ее стратегиями (множество всех стратегий коалиции действия K обозначается как S ), результаты конфликта - ситуациями (множество всех ситуаций обозначается как S ; считается, что каждая ситуация складывается вследствие выбора каждой из коалиций действия некоторой своей стратегии, так, что ), заинтересованные стороны - коалициями интересов (их множество - I) и, наконец, говорить о возможных преимуществах для каждой коалиции интересов K одной ситуации s " перед другим s "(этот факт обозначается как ), то конфликт в целом может быть описан как система

.

Такая система, представляющая конфликт, называется игрой . Конкретизации составляющих, задающих игру, приводят к различным классам игр.

Классификация игр

Отдельными классами бескоалиционный игр есть:

  • антагонистические игры, включая матричные игры и игры на единичном квадрате.
  • динамичные игры, в том числе дифференциальные игры,
  • рекурсивные игры,
  • игры на выживание

и другие, также относятся к бескоалиционный игр.

Математический аппарат

Теория игр широко использует различные математические методы и результаты теории вероятностей, классического анализа, функционального анализа (особенно важны теоремы о неподвижные точки), комбинаторной топологии, теории дифференциальных и интегральных уравнений, и другие. Специфика теории игр способствует разработке разнообразных математических направлений (например, теория выпуклых множеств, линейное программирование, и т.д.).

Принятием решения в теории игр считается выбор коалицией действия, или, в частности, выбор игроком некоторой своей стратегии. Этот выбор можно представить себе в виде одноразового действия и возводить формально к выбору элемента из множества. Игры с таким пониманием выбора стратегий называются играми в нормальной форме . Им противопоставляются динамичные игры, в которых выбор стратегии является процессом, который происходит в течение некоторого времени, которое сопровождается расширением и сужением возможностей, получением и потерей информации о текущем состоянии дел, и т.п.. Формально, стратегией в такой игре есть функция, определенная на множестве всех информационных состояний субъекта, принимающего решения. Некритическое использование «свободы выбора» стратегий может приводить к парадоксальным явлениям.

Оптимальность и развязки

Вопрос о формализации понятия оптимальности является весьма сложным. Единое представление об оптимальности в теории игр отсутствует, поэтому приходится рассматривать несколько принципов оптимальности. Область возможности применения каждого из принципов оптимальности, используемых в теории игр, ограничивается сравнительно узкими классами игры, или же касается ограниченных аспектов их рассмотрения.

В основе каждого из этих принципов лежат некоторые интуитивные представления о оптимум, как о чем-то «устойчивое», или «справедливое». Формализация этих представлений дает требованиях, предъявляемых к оптимуму и имеющих характер аксиом.

Среди этих требований могут оказаться такие, которые противоречат друг другу (например, можно показать конфликты, в которых стороны вынуждены довольствоваться малыми выигрышами, поскольку крупных выигрышей можно достичь только в условиях неопределенных ситуаций); поэтому в теории игр не может быть сформулирован единый принцип оптимальности.

Ситуации (или множества ситуаций), которые удовлетворяют в некоторой игре те или иные требования оптимальности, называются решениями этой игры. Так как представление об оптимальности не однозначны, имело развязки игр в разных смыслах. Создание определений решений игры, доведение их существования и разработка путей их фактического поиска - три основные вопросы современной теории игр. Близкими к ним есть вопросы о единственности решений игр, о существовании в тех или иных классах игр решений, которые имеют некоторые заранее определенные свойства.

История

Как математическая дисциплина, теория игр зародилась одновременно с теорией вероятностей в 17 веке, но в течение почти 300 лет почти не развивалась. Первой существенной работой по теории игр следует считать статью Дж. фон Неймана «К теории стратегических игр» (1928), а с выходом в свет монографии американских математиков Дж. фон Неймана и О. Моргенштерна «Теория игр и экономическое поведение» (1944), теория игр сформировалась как самостоятельная математическая дисциплина. В отличие от других отраслей математики, имеющих преимущественно физическое, или физико-технологическое происхождение, теория игр с самого начала своего развития была направлена на решение задач, возникающих в экономике (а именно в конкурентной экономике).

В дальнейшем, идеи, методы и результаты теории игр стали применять в других областях знаний, имеющих дело с конфликтами: в военном деле, в вопросах морали, при изучении массового поведения индивидов, имеющих различные интересы (например, в вопросах миграции населения, или при рассмотрении биологической борьбы за существование). Теоретико-игровые методы принятия оптимальных решений в условиях неопределенности могут иметь широкое применение в медицине, в экономическом и социальном планировании и прогнозировании, в ряде вопросов науки и техники. Иногда теорию игр относят к математическому аппарату кибернетики, или теории исследования операций.

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

Использование математических методов, к числу которых относится теория игр, в анализе экономических процессов позволяет выявить такие тенденции, взаимосвязи, которые остаются скрытыми при применении других методов.

В экономической действительности на каждом шагу встречаются ситуации, когда отдельные люди, фирмы или целые страны пытаются обойти друг друга в борьбе за первенство. Такими ситуациями и занимается ветвь экономического анализа, называемая "теория игр".

"Теория игр изучает то, каким образом двое или более игроков выбирают отдельные действия или целые стратегии. Название этой теории настраивает на несколько отвлеченный лад, поскольку оно ассоциируется с игрой в шахматы и бридж или с ведением войн. На самом деле выводы этой дисциплины весьма глубоки. Теория игр была разработана выходцем из Венгрии, гениальным математиком Джоном фон Нейманом (1903-1957). Эта теория сравнительно молодая математическая дисциплина.

В дальнейшем теория игр была дополнена такими разработками, как равновесие Нэша (по имени математика Джона Нэша). Равновесие по Нэшу возникает, когда ни один из игроков не может улучшить своего положения, если его противники не изменят своих стратегий. Стратегия каждого игрока является лучшим ответом на стратегию его противника. Иногда равновесие по Нэшу называют также некооперативным равновесием, поскольку участники совершают свой выбор, не вступая ни в какие соглашения друг с другом и не принимая во внимание никаких других соображений (интересы общества или интересы других сторон), кроме собственной выгоды.

Равновесие совершенно конкурентного рынка также является равновесием по Нэшу, или некооперативным равновесием, при котором каждая фирма и каждый потребитель принимают решения исходя из уже существующих цен как не зависящих от его воли. Мы уже знаем, что в условиях, когда каждая фирма стремится максимизировать прибыль, а каждый потребитель - полезность, равновесие возникает, когда цены равны предельным издержкам, а прибыль - нулю. " Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 200 с.

Вспомним концепцию "невидимой руки" Адама Смита: "Преследуя собственные интересы, он (индивид) часто в большей степени способствует процветанию общества, чем если бы он к этому сознательно стремился" Смит А. Исследование о природе и причинах богатства народов // Антология экономической классики. - М.: Эконов-ключ, 19931. Парадокс "невидимой руки" заключается в том, что, хотя каждый и действует как самостоятельная сила, в конечном итоге общество остается в выигрыше. При этом конкурентное равновесие является равновесием по Нэшу еще и в том смысле, что ни у кого нет повода изменять свою стратегию, если и все остальные придерживаются своей. В условиях совершенно конкурентной экономики некооперативное поведение является экономически эффективным с точки зрения интересов общества.

Напротив, когда члены некоторой группы решают кооперироваться и совместно прийти к монопольной цене, такое поведение нанесет ущерб экономической эффективности. Государство вынуждено создавать антимонопольное законодательство и тем самым урезонивать тех, кто пытается завысить цены и поделить рынок. Однако не всегда разобщенность в поведении является экономически эффективной. Соперничество между фирмами ведет к низким ценам и конкурентному объему производства. "Невидимая рука" оказывает почти волшебное воздействие на совершенно конкурентные рынки: эффективное распределение ресурсов происходит в результате действий индивидов, стремящихся к максимизации прибыли.

Однако во многих случаях некооперативное поведение приводит к экономической неэффективности или даже представляет угрозу для общества (например, гонка вооружений). Некооперативное поведение как со стороны США, так и со стороны СССР заставляло обе стороны вкладывать огромные средства в военную область и привело к созданию арсенала, состоящего из почти 100000 ядерных боеголовок. Существует также опасение, что чрезмерная доступность оружия в Америке может стать причиной своего рода внутренней гонки вооружений. Одни люди вооружают себя против других - и этот "бег наперегонки" может продолжаться до бесконечности. Здесь в действие вступает вполне "видимая рука", направляющая это разрушительное состязание и не имеющая ничего общего с "невидимой рукой" Адама Смита. Еще один важный экономический пример - "игры в загрязнения" (окружающей среды). Здесь объектом нашего внимания станет такой вид побочных эффектов, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма из благородных побуждений решилась бы уменьшить вредные выбросы, то издержки, а следовательно, и цены на ее продукцию, возросли бы, а спрос упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Вступив в смертоносную экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры, с тем чтобы равновесие переместилось. В этом положении загрязнение будет незначительным, прибыли же останутся теми же. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 203 с.

Игры в загрязнения - один из случаев того, как механизм действия "невидимой руки" не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Теория игр применима и к макроэкономической политике. Экономисты и политики в США часто поругивают существующую денежно-кредитную и налогово-бюджетную политику: дефицит федерального бюджета слишком велик и уменьшает национальные сбережения, тогда как кредитно-денежная политика порождает такие процентные ставки, которые ограничивают инвестиции. Более того, этот "бюджетно-денежный синдром" является свойством макроэкономического "ландшафта" уже более десяти лет. Почему же Америка так упорно проводит оба вида политики, хотя ни один из них нежелателен?

Можно попытаться объяснить этот синдром с точки зрения теории игр. Стало привычным в современной экономике разделять данные разновидности политики. Центральный банк Америки - Федеральная резервная система - определяет независимо от правительства денежно-кредитную политику, назначая процентные ставки. Налогово-бюджетной политикой, налогами и расходами - заведуют законодательные и исполнительные власти. Однако каждый из этих видов политики имеет разные цели. Центральный банк стремится ограничить рост предложения денег и обеспечить низкие темпы инфляции.

Артур Берне, специалист по экономическим циклам и бывший глава ФРС, писал: "Чиновники центрального банка склонны, в силу традиции, а возможно, и в силу личного склада, держать цены в узде. Их ненависть к инфляции еще более разгорается после общения с единомышленниками из частных финансовых кругов". Власти же, заведующие налогово-бюджетной политикой, больше озабочены такими вопросами, как полная занятость, собственная популярность, сохранение низких налогов и грядущие выборы.

Лица, проводящие налогово-бюджетную политику, предпочитают минимально возможную величину безработицы, увеличение государственных расходов в сочетании с понижением налогов и не заботятся об инфляции и частных инвестициях.

В бюджетно-денежной игре кооперативная стратегия приводит к умеренной инфляции и безработице в сочетании с большим объемом инвестиций, стимулирующим экономический рост. Однако желание уменьшить безработицу и реализовать социальные программы побуждает руководство страны прибегать к увеличению бюджетного дефицита, тогда как неприятие инфляции заставляет центральный банк поднимать процентные ставки. Некооперативное равновесие означает наименьший возможный объем инвестиций.

Они выбирают "большой бюджетный дефицит". С другой стороны, центральный банк пытается уменьшить инфляцию, не подвержен влиянию профсоюзов и лоббирующих группировок и выбирает "высокие процентные ставки". Результатом является некооперативное равновесие с умеренными величинами инфляции и безработицы, но с низким уровнем инвестиций.

Возможно, что именно благодаря "бюджетно-денежной игре" президент Клинтон выдвинул экономическую программу по уменьшению бюджетного дефицита, снижению процентных ставок и расширению объема инвестиций.

Существуют разные способы описания игр. Один из них состоит в том, что рассматриваются все возможные стратегии игроков и определяются платежи, соответствующие любой возможной комбинации стратегий игроков. Игра, описанная таким способом, называется игрой в нормальной форме.

Нормальная форма игры двух участников состоит из двух платежных матриц, показывающих, какую сумму получит каждый из игроков при любой из возможных пар стратегий. Обычно эти матрицы выражают в форме единой матрицы, которую называют биматрицей. Элементами биматрицы являются пары чисел, первое из которых определяет величину выигрыша первого игрока, а второе - величину выигрыша второго. Первый игрок (государство) выбирает одну из m стратегий, при этом каждой стратегии соответствует строка матрицы I (i= 1,…,m). Второй игрок (бизнес) выбирает одну из n стратегий, при этом каждой стратегии соответствует столбец матрицы j (j= 1,…,n). Пара чисел на пересечении строки и столбца, которые соответствуют стратегиям, выбранным игроками, показывает величину выигрыша каждого из них. В общем случае, если игрок I выбирает стратегию i а игрок II - стратегию j, то выигрыши первого и второго игроков соответственно равны и (i= 1,…,m; j= 1,…,n), где m,n - число конечных стратегий соответственно игроков I и II. Предполагается, что каждому из игроков известны все элементы биматрицы выигрышей. В этом случае их стратегия называется определенной и имеет конечное число вариантов.

Если игроку неизвестны какие-либо варианты стратегий противника (элементы матрицы), то игра называется неопределенной и может иметь бесконечное число вариантов (стратегий).

Существуют и другие классы игр, где игроки выигрывают и проигрывают одновременно.

Антагонистические игры двух лиц связаны с тем, что один из игроков выигрывает ровно столько, сколько проигрывает другой. В таких играх интересы ее игроков прямо противоположны друг другу.

В качестве примера рассмотрим игру, в которой участвуют два игрока, каждый из них имеет по две стратегии. Выигрыши каждого из игроков определяются такими правилами: если оба игрока выбирают стратегии с одинаковыми номерами (игрок I - , игрок II -), то первый игрок выигрывает, а второй проигрывает (государство повышает налоги - бизнес платит их, т.е. выигрыш государства определяет проигрыш бизнеса); если оба игрока выбирают разные стратегии (игрок I - і 1 игрок II - j 2 то первый проигрывает, а второй выигрывает (государство повышает налоги на бизнес - бизнес уклоняется от них; проигрыш государства - выигрыш бизнеса).

Теория игр есть теория математических моделей таких явлений, в которых участники ("игроки") имеют различные интересы и располагают для достижения своих целей более или менее свободно выбираемыми путями (стратегиями). В большинстве работ по теории игр предполагается, что интересы участников игры поддаются количественному измерению и являются вещественными функциями ситуаций, т.е. набором стратегий, получаемых при выборе каждым из игроков некоторой своей стратегии. Для получения результатов необходимо рассматривать те или иные классы игр, выделенные некоторыми ограничительными предположениями. Такие ограничения можно накладывать несколькими путями.

Можно выделить несколько способов (путей) наложения ограничений.

1. Ограничения возможностей взаимоотношений игроков между собой. Простейшим случаем является такой, когда игроки действуют совершенно разобщено и не могут сознательно помогать или мешать друг другу действием или бездействием, информацией или дезинформацией. Такое положение дел неизбежно наступает, когда в игре участвуют только два игрока (государство и бизнес), имеющие диаметрально противоположные интересы: увеличение выигрыша одного из них означает уменьшение выигрыша другого, и притом на ту же сумму, при условии, что выигрыши обоих игроков выражаются в одинаковых единицах измерения. Не нарушая общности, можно принять суммарный выигрыш обоих игроков равным нулю и трактовать выигрыш одного из них как проигрыш другого.

Эти игры называют антагонистическими (или играми с нулевой суммой, или нулевыми играми двух лиц). Они предполагают, что никаких взаимоотношений между игроками, никаких компромиссов, обменов информацией и другими ресурсами не может быть по самой своей природе вещей, по сути игры, поскольку каждое сообщение, получаемое игроком о намерениях другого, может лишь увеличить выигрыш первого игрока и тем самым увеличить проигрыш его противника.

Таким образом, сделаем вывод, что в антагонистических играх игрокам можно не иметь непосредственных взаимоотношений и вместе с тем находиться в состоянии игры (противостоянии) по отношению друг к другу.

2. Ограничения или упрощающие предположения на множестве стратегий игроков. В наиболее простом случае эти множества стратегий конечны, что устраняет ситуации, связанные с возможными совпадениями (сходимостями) в множествах стратегий, избавляет от необходимости вводить на множествах какую-либо технологию.

Игры, в которых множества стратегий каждого из игроков конечны, называются конечными играми.

3. Предложения о внутреннем строении каждой стратегии, т.е. о ее содержании. Так, например, в качестве стратегий можно рассматривать функции времени (непрерывного или дискретного), значениями которых являются действия игрока в соответствующий момент. Эти и подобные им игры принято называть динамическими (позиционными).

Ограничениями стратегий игроков могут быть и их целевые функции, т.е. определение тех целей, на реализацию которых направлена та или иная стратегия. Можно предположить, что ограничения на стратегию связаны и со способами достижения этих целей в тех или иных временных интервалах, например стремление бизнеса добиться снижения размеров обязательных продаж валютной выручки в течение ближайших трех месяцев (или одного года). Если же предположений о природе стратегий не делается, то они считаются некоторым абстрактным множеством. Такого рода игры в самой простой постановке вопроса называются играми в нормальной форме.

Конечные антагонистические игры в нормальной форме называются матричными. Это название объясняется возможностью следующей интерпретации игр такого типа. Будем понимать стратегии первого игрока (игрок I - государство) как строки некоторой матрицы, а стратегии второго игрока (игрок II - бизнес) - как ее столбцы. Для краткости стратегиями игроков называют не сами строки или столбцы матрицы, а их номера. Тогда ситуациями игры оказываются клетки этой матрицы, стоящие на пересечениях каждой строки с каждым из столбцов. Заполнив эти клетки-ситуации числами, описывающими выигрыши игрока I в этих ситуациях, мы завершим задание игры. Полученная матрица называется матрицей выигрыша игры, или матрицей игры. Ввиду антагонистичности матричной игры выигрыш игрока II в каждой ситуации вполне определяется выигрышем игрока I в этой ситуации, отличаясь от него только знаком. Поэтому дополнительных указаний о функции выигрыша игрока II в матричной игре не требуется.

Матрицу, имеющую m строк и n столбцов, называют (m*n) - матрицей, а игру с этой матрицей - (m*n) - игрой.

Процесс (m*n) - игры с матрицей можно представить следующим образом:

Игрок I фиксирует номер строки i, а игрок II - номер столбца j, после чего первый игрок получает от своего противника сумму

Целью игрока I в матричной игре является получение максимального выигрыша, цель игрока II состоит в том, чтобы дать игроку I минимальный выигрыш.

Пусть игрок I (государство) выбирает некоторую свою стратегию i. Тогда в наихудшем случае он получит выигрыш min . В теории игр игроки предполагаются осторожными, рассчитывающими на наименее благоприятный для себя поворот событий.

Такое наименее благоприятное для игрока I положение дел может наступить, например, в том случае, когда стратегия i станет известной игроку II (бизнес). Предвидя такую возможность, игрок I должен выбирать свою стратегию так, чтобы максимизировать этот минимальный выигрыш:

min = max min (I)

Значение, стоящее в правой части равенства, является гарантированным выигрышем игрока I. Игрок II (бизнес) должен выбрать такую стратегию, что

max = min max (II)

Значение, стоящее в правой части равенства, является выигрышем игрока I, больше которого он при правильных действиях противника получить не может.

Фактический выигрыш игрока I должен при разумных действиях партнеров находиться в интервале между значениями выигрыша в первом и втором случаях. Если эти значения равны, то выигрыш игрока I является вполне определенным числом, сами игры называются вполне определенными. Выигрыш игрока I называется значением игры, и он равен элементу матрицы.

У игроков могут быть дополнительные возможности - выбор своих стратегий случайно и независимо друг от друга (стратегии соответствуют строкам и столбцам матрицы). Случайный выбор игроком своих стратегий называется смешанной стра тегии этого игрока. В (m*n) - игрё смешанные стратегии игрока I определяются наборами вероятностей: X = (,…), с которыми этот игрок выбирает свои первоначальные, чистые стратегии.

В основе теории матричных игр лежит теорема Неймана активных стратегиях: "Если один из игроков придерживается своей оптимальной стратегии, то выигрыш остается неизменным и равным цене игры независимо от того, что делает другой игрок, если он не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях" Neumann J. Contributions to the theory of games. 1995.. - 155 с.). Отметим, что активной называется чистая стратегия игрока, входящая в его оптимальную смешанную стратегию с отличной от нуля вероятностью.

Главная цель игры - нахождение оптимальной стратегии для обоих игроков, если не с максимальным выигрышем одного из них, то тогда с минимальным проигрышем для обоих. Метод нахождения оптимальных стратегий дает часто больше, чем это необходимо для практических целей. В матричной игре не обязательно, чтобы игрок знал все свои оптимальные структуры, поскольку они все взаимозаменяемы и игроку для успешной игры, достаточно знать одну из них. Поэтому применительно к матричным играм актуальным является вопрос о нахождении хотя бы одной оптимальной стратегии для каждого из игроков.

Основная теорема о матричных играх устанавливает существование значения игры и оптимальных смешанных стратегий для обоих игроков. Оптимальная стратегия не обязана быть единичной. Это очень важный вывод, полученный на основе теории игр.

Для играющего в матричную игру субъекта характерны следующие качества:

элементы матрицы интерпретируются как денежные платежи и соответственно их выигрыш и проигрыш оцениваются в денежной форме;

каждый из игроков применяет к этим элементам функцию полезности;

в игре каждый игрок действует так, как если бы функция полезности его оппонента оказывала на матрицу точно такое же воздействие, т.е. каждый смотрит на игру "со своей колокольни".

Эти предположения приводят к играм с нулевой суммой, в которых возникают отношения кооперирования, торгов и другого типа взаимодействий между игроками как до начала игры, так и в ее процессе. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 210 - 211с.

Обобщение теории игр, имеющее целью включение в нее других возможностей анализа, приводит к интересным, но достаточно трудным задачам. При развитии теории игр необходимо применять функцию полезности не только к денежным исходам, но и к суммам с ожидаемыми будущими исходами. Эти предположения являются спорными, но они существуют. В данном случае мы исходим из того, что это предположение о подобной операции имеет сходство с поведением игроков в определенных ситуациях принятия решений и допускает возможность, что способ ведения игры данным игроком зависит от состояния его капитала во время ведения им игры.

Рассмотрим это на следующем примере. Пусть первый игрок к моменту начала игры G обладает капиталом в x долларов. Тогда его капитал в конце игры будет равен + x, где - получаемый им от игры фактический выигрыш. Полезность, которую он приписывает такому исходу, равна f (+ х), где f - функция полезности.

Эти несколько примеров иллюстрируют только часть огромного разнообразия результатов, которые можно получить, используя теорию игр. Данный раздел экономической теории является чрезвычайно полезным (для экономистов и других представителей общественных наук) инструментом анализа ситуаций, при которых небольшое число людей хорошо информировано и пытается перехитрить друг друга на рынках, в сфере политики или в военных действиях.

Статьи по теме: