Что означает ситуация равновесия по нэшу. Игры с непротивоположными интересами. Равновесие Нэша. Парето-оптимальность. Чисто мужской эксперимент

В результате освоения данной главы студент должен:

знать

  • определение равновесия по Нэшу (как в чистых, так и в смешанных стратегиях);
  • основные свойства равновесия по Нэшу;
  • теоремы, формулирующие условия существования равновесия по Нэшу в стратегических играх;
  • определение понятия "равновесие дрожащей руки";

уметь

Решать задачу нахождения равновесия по Нэшу в биматричных играх (в том числе графическим методом для игр);

владеть

  • простейшими методами анализа свойств биматричных игр 2 х 2 с использованием результатов их графического решения;
  • системой представлений как о возможностях, так и об объективных проблемах практического применения понятия равновесия по Нэшу;
  • терминологическим аппаратом, позволяющим самостоятельно осваивать научную и профессиональную литературу, использующую понятие равновесия но Нэшу и его свойства.

В данной главе мы рассмотрим основной объект исследования теории бескоалиционных игр, получивший название равновесия по Нэшу. Данное понятие было предложено выдающимся американским математиком Джоном Нэшем (John Forbes Nash) сначала в его диссертации, а затем в серии работ, вышедших в 1950-1953 гг. .

^ Ситуацию s* в игре Г = (I, {} i Î I , {(s)} i Î I) будем называть равновесием но Нэшу (в чистых стратегиях), если для любого игрока i Î I

Другими словами, ситуация равновесия по Нэшу - это такая ситуация в игре, от которой ни одному из игроков невыгодно отклоняться поодиночке (при условии что остальные участники игры придерживаются своих стратегий, образующих равновесие по Нэшу).

Рассмотрим отображения, которые для каждого игрока i Î I для каждой возможной подситуации Î ставят в соответствие некоторую стратегию , являющуюся его наилучшим ответом для данной подситуации:

Отображения возвращающие наилучшие ответы на подситуации, также называют отображениями отклика игрока. Из неравенства (3.1) следует, что ситуация равновесия по Нэшу образуется стратегиями, которые возвращаются отображениями отклика всех игроков, т.е. ситуация равновесия по Нэшу - это ситуация, образуемая наилучшими ответами каждого игрока на наилучшие ответы остальных:

В свою очередь, из условия (3.3) вытекают следующие свойства.

  • 1. Строго доминируемые стратегии и НЛО-стратегии не могут входить в равновесие по Нэшу.
  • 2. Стратегии, образующие равновесие по Нэшу, не могут быть исключены в процессе удаления строго доминируемых стратегий и рационализации игры.

Одновременно следует подчеркнуть, что слабо доминируемые стратегии перечисленными свойствами не обладают. Несложно сконструировать пример равновесия по Нэшу, в котором будут присутствовать одна или несколько слабодоминируемых стратегий.

Для рассмотрения свойств равновесия по Нэшу вернемся к игре "дилемма заключенного" (см. табл. 2.1).

Как нетрудно заметить, данная игра имеет единственное состояние равновесия по Нэшу. Это ситуация (С, С), в которой оба игрока сознаются и получают по пять лет тюремного наказания. Фундаментальным качеством ситуации (С, С) является именно то, что от нее действительно никому невыгодно отклоняться поодиночке. Если один из заключенных попытается сменить стратегию с "сознаться" на "молчать", то

этим он только ухудшит свое положение - вместо пяти лет наказания получит десять - и улучшит положение другого игрока, которого отпустят.

Нельзя не признать, что ситуация равновесия в данном примере является неэффективным исходом для заключенных. Ведь в ситуации (М, М) - оба молчат - их полезности выше (срок наказания составляет один год против пяти). Однако ситуация (М, М) обладает тем недостатком, что она неустойчива. В ней каждому из игроков выгодно сменить стратегию "молчать" на "сознаться", при условии что другой игрок продолжает придерживаться стратегии "молчать". В этом случае наказание для предавшего становится нулевым, правда, резко возрастает для преданного: с года до десяти.

Таким образом, дилемма заключенного достаточно ярко отражает тот факт, что

равновесие по Нэшу - необязательно "самая выгодная" ситуация для игроков, это устойчивая ситуация.

Также на примере дилеммы заключенного достаточно наглядно может быть продемонстрировано соотношение равновесия по Нэшу с таким фундаментальным понятием экономики, как оптимальность по Парето . Напомним, что

распределение называют оптимальным но Парето (Парето-оптимальным), когда полезность (благосостояние) ни одного из участников этого распределения не может быть увеличена без уменьшения полезности какого-либо другого участника.

Нетрудно заметить, что в дилемме заключенного ситуация равновесия но Нэшу является единственной Парето-неоптимальной: полезность участников "безболезненно для каждого из них" можно улучшить, перейдя от ситуации (С, С) к ситуации (М, М), но последняя не является равновесием по Нэшу в силу своей неустойчивости. С этой точки зрения дилемма заключенного является классическим примером, демонстрирующим различия между понятиями "равновесие по Нэшу" и "оптимальность по Парето".

Продемонстрируем возможности практического использования концепции равновесия по Нэшу на примере сюжетов из литературного приложения.

  • За свой вклад в теорию некооперативных игр Дж. Нэш в 1994 г. получил Нобелевскую премию по экономике
  • Введено итальянским экономистом и социологом Вильфредо Парето (1848-1923)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Равновесие Нэша

Введение

1. Джон Форбс Нэш

1.1 Научные достижения Джона Нэша

2. Равновесие Нэша

2.1 Проблема существования равновесий Нэша

2.2 Проблема единственности равновесия Нэша

2.3 Проблема эффективности равновесия Нэша

2.4 Оптимальные по Парето ситуации

3. Проблемы практического применения

Заключение

Список литературы

Введение

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, принимаемых фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы и стремятся сговориться, тогда, как на других агрессивно конкурируют; использующих фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия п опроса или расходов или, когда новые конкуренты вторгаются на рынок.

Первыми провели исследование в области теории игр Дж-Ф Нейман и О Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944) Они распространили математические категории этой теории й на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирования в игре.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - игра с нулевой суммой, предусматривающий такой выигрыш, состоящий исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общее, а сумма пользы и потерь всегда равна нулю. Вторая категория - игра с положительной суммой, когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, стремится максимально повысить функцию, переменные которой им не контролируются. Если все игроки одинаково умелые, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои й намерениях, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе.

В начале 50-х Джон Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу».

1. Джон Форбс Нэш

Очень сильная личность и Нобелевский лауреат Джон Нэш является ученым, который много и плодотворно работал в сфере дифференциальной геометрии и теории игр. Однако не все знают, что математик многие годы своей жизни посвятил трагической борьбе с собственным безумием, граничащим с гениальностью.

«Хорошие научные идеи не приходили бы мне в голову, если бы я думал как нормальные люди.» Д. Нэш

Трудовую деятельность Джон Нэш начал в корпорации "РЭНД" (Санта-Моника, Калифорния), где работал летом 1950 года, а также в 1952 и 1954 годах.

В 1950 - 1951 годах молодой человек преподавал на курсах исчисления (Принстон). В этот период времени он доказал теорему Нэша (о регулярных вложениях). Она является одной из главных в дифференциальной геометрии.

В 1951 - 1952 гг. Джон работает научным ассистентом в Кембридже (Массачусетский технологический институт).

Великому ученому было трудно уживаться в рабочих коллективах. Еще со времен студенчества он прослыл чудаковатым, обособленным, заносчивым, эмоционально холодным человеком (что уже тогда указывало на шизоидную организацию характера). Коллеги и сокурсники, мягко говоря, недолюбливали Джона Нэша за эгоистичность и замкнутость.

1.1 Научные достижения Джона Нэша

Прикладная математика имеет один из разделов - теория игр, который изучает оптимальные стратегии в играх. Эта теория широко применяется в общественных науках, экономике, изучении политико-социальных взаимодействий.

Самое большое открытие Нэша - это выведенная формула равновесия. Она описывает игровую стратегию, в которой выигрыш увеличить не может ни один участник, если изменит свое решение в одностороннем порядке. Например, рабочий митинг (требующий повышения социальных льгот) может завершиться соглашением сторон или же путчем. Для взаимной выгодности две стороны должны использовать идеальную стратегию. Ученый сделал математическое обоснование сочетаний коллективной и личной выгоды, понятий конкуренции. Также он развил "теорию торгов", которая была положена в основу современных стратегий разных сделок (аукционов и т. п.).

Научные изыскания Джона Нэша после исследований в области теории игр не остановились. Ученые считают, что труды, которые математик написал после его первого открытия, даже люди науки не могут понять, очень уж они сложны и для их восприятия.

нэш математик единственность равновесие

2. Равновесие Нэша

Основной математической моделью конфликтной ситуации является игра в нормальной форме. Эта модель задается совокупностью

где множество участников или игроков;

множество допустимых стратегий игрока;

ситуация игры, возникающая в результате выбора всеми игроками своих стратегий;

выигрыш игрока в ситуации.

Важнейшим принципом принятия решений в конфликтных ситуациях является понятие равновесия Нэша.

Равновесием Нэша в игре называется набор стратегий такой, что для каждого игрока его стратегия, входящая в набор, удовлетворяет условию:

Выражение "" читается " при условии ". Оно обозначает набор стратегий, в котором все компоненты, кроме стратегии игрока, совпадают с, а стратегия есть. Данное условие показывает, что стратегия, входящая в набор, является оптимальной для игрока при фиксированных стратегиях всех остальных игроков. Таким образом, можно сказать, что равновесие Нэша это такой набор стратегий, от которого ни одному из игроков не выгодно отклоняться индивидуально.

Обсудим, как можно использовать понятие равновесия Нэша с точки зрения принятия решений. В теории игр, как и во многих других теориях, можно выделить два подхода: нормативный и позитивный. Нормативный подход состоит в том, что теория дает рекомендации, как следует действовать в той или иной конфликтной ситуации. А при позитивном подходе теория пытается описать, как на самом деле происходит взаимодействие между игроками. Изначально теория игр развивалась как нормативная. И сейчас мы обсудим понятие равновесия Нэша именно с такой точки зрения. В этом случае правило принятия решения можно сформулировать следующим образом: в конфликтной ситуации, описываемой игрой в нормальной форме, каждому участнику следует использовать стратегию, которая входит в равновесие Нэша.

Возникают следующие вопросы: всегда ли существует равновесие Нэша и является ли оно единственным? Далее приводятся несколько примеров, которые показывают, что на оба эти вопроса ответ, вообще говоря, отрицательный.

2 .1 Проблема существования равновесий Нэша

Рассмотрим игру двух лиц (), у каждого из которых имеется конечное число стратегий: , . Такие игры двух лиц с конечным числом стратегий у каждого игрока называют биматричными, т.к. для задания функций выигрыша в этом случае удобна биматричная форма записи:

Стратегиям первого игрока соответствуют строки, а стратегиям второго игрока столбцы. Элемент матрицы равен выигрышу игрока, если первый игрок использует свою -тую стратегию, а второй игрок применяет свою -тую стратегию.

Пример игры, в которой не существует равновесий Нэша

Рассмотрим следующую биматричную игру:

Игре с такими матрицами выигрышей можно дать следующую интерпретацию: происходит игра "в монетку": второй игрок загадывает "орел" или "решку", а первый игрок отгадывает. Если он угадывает правильно, то получает от второго игрока "1", иначе отдает "1" второму игроку.

Легко видеть, что в рассматриваемой игре нет равновесий Нэша. Это можно доказать непосредственной проверкой: какую бы ситуацию мы ни взяли, одному из игроков выгодно отклониться, т.к. их интересы противоположны (если выигрывает один, то проигрывает другой) и при любой фиксированной стратегии одного из игроков у другого всегда найдется стратегия, при которой он выигрывает.

2 .2 Проблема единственности равновесия Нэша

Перейдем к ответу на второй вопрос: если существует равновесие Нэша, то является ли оно единственным?

Рассмотрим биматричную игру, называемую "семейный спор". Игроки молодая супружеская пара. Они решают проблему, куда пойти вечером: на футбол или на балет. Муж предпочитает футбол, а жена балет. Но в любом случае им хочется провести вечер вместе, т.к. если они пойдут в разные места, то все удовольствие будет испорчено.

матрица выигрышей жены,

матрица выигрышей мужа.

Легко убедиться, что в этой игре существует два равновесия Нэша: когда оба игрока используют первую стратегию (т.е. супруги идут на балет), либо когда оба игрока используют вторую стратегию (т.е. супруги идут на футбол).

Согласно принципу принятия решений, основанному на понятии равновесия Нэша, игрок должен использовать стратегию, входящую в какое-либо равновесие Нэша. Допустим, каждый игрок выберет то равновесие Нэша, которое ему больше нравится. В данной игре это может привести к самому худшему результату, т.к. жена выберет балет, муж выберет футбол, и в результате они попадут в ситуацию, когда выигрыш у обоих нулевой, т.е. меньше, чем выигрыш каждого игрока в любой из точек равновесия Нэша.

Пример показывает, что необходим какой-то механизм координации при выборе стратегии, если существует несколько равновесий Нэша. Поэтому игры, подобные данному примеру, называют также "играми на координацию".

2 .3 Проблема эффективности равновесия Нэша

Рассмотрим биматричную игру, называющуюся "Дилемма заключенного". (Эта игра достаточно знаменита. Ей посвящено несколько тысяч работ, дающих различные интерпретации этой игры.) Игроками являются два находящихся под следствием человека. У каждого из них есть две стратегии: сознаться в совершенном преступлении или не сознаваться. Следователь предлагает каждому заключенному такие условия: если он сознается, а другой подозреваемый нет, то тогда первого, учитывая его помощь следствию, осудят по минимальному обвинению (на 1 год), а второму дадут максимальный срок (10 лет). Если сознаются оба, то их обоих осудят и дадут срок, соответствующий их преступлению (по 5 лет лишения свободы каждому). Наконец, если оба подследственных не сознаются, то их смогут осудить за недостаточностью улик только по части обвинения (например, за незаконное хранение оружия вместо более тяжкого преступления, которое они на самом деле совершили). В этом случае оба получат по 2 года.

Получаем следующие матрицы выигрышей ("С" сознаться, "Н" не сознаваться):

для первого игрока

для второго игрока

В этой игре существует единственная точка равновесия Нэша обоим сознаться. Но есть ситуация, которая выгоднее обоим игрокам это обоим не сознаваться. Следовательно, точки равновесия Нэша могут быть неэффективны в том смысле, что за счет отклонения обоих игроков от точки равновесия Нэша можно улучшить выигрыши каждого из них.

Описанная в примере игра имеет следующую структуру:

2.4 Оптимальные по Парето ситуации

Чтобы сформулировать обнаруженное свойство неэффективности равновесий Нэша более формально, введем понятие Парето-оптимальной ситуации.

Пусть задана игра в нормальной форме. Набор стратегий называется Парето-оптимальным, если для любого

Фактически оптимальность некоторой ситуации по Парето означает, что за счет изменения стратегий нельзя увеличить выигрыши хотя бы части игроков так, чтобы при этом не уменьшить выигрыши для остальных.

Рассмотренный пример "дилемма заключенного" показывает, что для некоторых игр не существует точек равновесий Нэша, являющихся Парето-оптимальными. В этом случае любая точка равновесия Нэша может быть улучшена за счет совместного выбора стратегий.

3 . Проблемы практического применения

Мы отметили три недостатка понятия равновесия по Нэшу:

равновесий Нэша в игре может не существовать;

равновесие Нэша может быть не единственно;

равновесие Нэша может быть неэффективно.

Но, несмотря на эти недостатки, указанное понятие играет центральную роль в теории принятия решений в конфликтных ситуациях. В 1999 году Джон Нэш, предложивший данное понятие равновесия и известный в основном именно благодаря этому, получил Нобелевскую премию по экономике.

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у игроков сложились разные представления об игре, в которой они участвуют, или, когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно применять опыт подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет учесть дополнительные переменные или факторы, имеющие возможность повлиять на ситуацию, и тем самым повысить эффективность решения.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Где же сегодня применяются открытия Нэша?

Пережив бум в семидесятых-восьмидесятых, теория игр заняла прочные позиции в некоторых отраслях социального знания. Эксперименты, в которых команда Нэша в свое время фиксировала особенности поведения игроков, в начале пятидесятых были расценены как провал. Сегодня они легли в основание «экспериментальной экономики». «Равновесие Нэша» активно используется в анализе олигополий: поведении небольшого количества конкурентов в отдельном секторе рынка.

Кроме того, на Западе теория игр активно используется при выдаче лицензий на вещание или связь: выдающий орган математически высчитывает наиболее оптимальный вариант распределения частот.

Список литературы

1. Васин А. А., Морозов В. В. Теория игр и модели математической экономики. -- М.: МГУ, 2005, 272 с.

2. Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. -- М.: Наука, 1985

3. http://dic.academic.ru/dic.nsf/econ_dict/22119

4. http://economicportal.ru/ponyatiya-all/nash_equilibrium.html

Размещено на Allbest.ru

...

Подобные документы

    Проблемы неравномерного распределения доходов среди населения. Закон распределения Парето: зависимость между размером доходов и количеством людей. Распределение Парето в теории катастроф. Методы обработки данных с распределением с тяжелыми хвостами.

    курсовая работа , добавлен 06.01.2012

    Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.

    контрольная работа , добавлен 11.06.2011

    Разработка математической модели оптимальной расстановки игроков футбольной команды на поле с учетом распределения игровых обязанностей между футболистами и индивидуальных особенностей каждого для достижения максимальной эффективности игры всей команды.

    курсовая работа , добавлен 04.08.2011

    Сравнительная характеристика эффективности и простоты применения зажиточных за Кондорсе правил голосования Копленда и Симпсона, законов Бордо и оптимальности по Парето с целью разработки автоматизированной программы для нахождения победителя выборов.

    курсовая работа , добавлен 20.08.2010

    Условия равновесия в экономической модели. Методы регулирования совокупного спроса. Исследование возможностей получения эффективных равновесий в макроэкономике. Использование монетарной и фискальной политик в процессе регулирования рыночных отношений.

    дипломная работа , добавлен 18.11.2017

    Экономическое равновесие, условия и методы его достижения, ценовые и неценовые причины нарушения. Общая модель рынка по Вальрасу, ее применение в обосновании экономического равновесия, отличия от модели Эрроу-Дебре. Устойчивость конкурентного равновесия.

    курсовая работа , добавлен 19.06.2009

    Цель сервисной деятельности, формы обслуживания потребителей. Анализ эффективности работы организации в сфере обслуживания. Понятие системы массового обслуживания, ее основные элементы. Разработка математической модели. Анализ полученных результатов.

    контрольная работа , добавлен 30.03.2016

    Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.

    реферат , добавлен 14.02.2011

    Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.

    контрольная работа , добавлен 18.01.2015

    Рассмотрение теоретических и практических аспектов задачи принятия решения. Ознакомление со способами решения с помощью построения обобщенного критерия и отношения доминирования по Парето; примеры их применения. Использование критерия ожидаемого выигрыша.

И Оскар Моргенштерн стали основателями нового интересного направления математики, которое получило название "теория игр". В 1950-е годы этим направлением заинтересовался молодой математик Джон Нэш. Теория равновесия стала темой его диссертации, которую он написал, будучи в возрасте 21 год. Так родилась новая стратегия игр под названием «Равновесие по Нэшу», заслужившая Нобелевскую премию спустя много лет - в 1994 году.

Долгий разрыв между написанием диссертации и всеобщим признанием стал испытанием для математика. Гениальность без признания вылилась в серьезные ментальные нарушения, но и эту задачу Джон Нэш смог решить благодаря прекрасному логическуму разуму. Его теория "равновесие по Нэшу" удостоилась премии Нобеля, а его жизнь экранизации в фильме «Beautiful mind» («Игры разума»).

Кратко о теории игр

Поскольку теория равновесия Нэша объясняет поведение людей в условиях взаимодействия, поэтому стоит рассмотреть основные понятия теории игр.

Теория игр изучает поведение участников (агентов) в условиях взаимодействия друг с другом по типу игры, когда исход зависит от решения и поведения нескольких людей. Участник принимает решения, руководствуясь своими прогнозами относительно поведения остальных, что и называется игровой стратегией.

Существует также доминирующая стратегия, при которой участник получает оптимальный результат при любом поведении других участников. Это наилучшая безпроигрышная стратегия игрока.

Дилемма заключенного и научный прорыв

Дилемма заключенного - это случай с игрой, когда участники вынуждены принимать рациональные решения, достигая общей цели в условии конфликта альтернатив. Вопрос заключается в том, какой из этих вариантов он выберет, осознавая личный и общий интерес, а также невозможность получить и то, и другое. Игроки словно заключены в жесткие игровые условия, что порой заставляет их мыслить очень продуктивно.

Эту дилемму исследовал американский математик Равновесие, которое он вывел, стало революционным в своем роде. Особенно ярко эта новая мысль повлияла на мнение экономистов о том, как делают выбор игроки рынка, учитывая интересы других, при плотном взаимодействии и пересечении интересов.

Лучше всего изучать теорию игр на конкретных примерах, поскольку сама эта математическая дисциплина не является сухо-теоретической.

Пример дилеммы заключенного

Пример, два человека совершили грабеж, попали в руки полиции и проходят допрос в отдельных камерах. При этом служители полиции предлагают каждому участнику выгодные условия, при которых он выйдет на свободу в случае дачи показаний против своего напарника. У каждого из преступников существует следующий набор стратегий, которые он будет рассматривать:

  1. Оба одновременно дают показания и получают по 2,5 года в тюрьме.
  2. Оба одновременно молчат и получают по 1 году, поскольку в таком случае доказательная база их вины будет мала.
  3. Один дает показания и получает свободу, а другой молчит и получает 5 лет тюрьмы.

Очевидно, что исход дела зависит от решения обоих участников, но сговориться они не могут, поскольку сидят в разных камерах. Также ярко виден конфликт их личных интересов в борьбе за общий интерес. У каждого из заключенных есть два варианта действий и 4 варианта исходов.

Цепь логических умозаключений

Итак, преступник А рассматривает следующие варианты:

  1. Я молчу и молчит мой напарник — мы оба получим по 1 году тюрьмы.
  2. Я сдаю напарника и он сдает меня — мы оба получим по 2,5 года тюрьмы.
  3. Я молчу, а напарник меня сдает — я получу 5 лет тюрьмы, а он свободу.
  4. Я сдаю напарника, а он молчит - я получаю свободу, а он 5 лет тюрьмы.

Приведем матрицу возможных решений и исходов для наглядности.

Таблица вероятных исходов дилеммы заключенного.

Вопрос состоит в том, что выберет каждый участник?

«Молчать, нельзя говорить» или «молчать нельзя, говорить»

Чтобы понять выбор участника, нужно пройти по цепочке его размышлений. Следуя рассуждениям преступника А: если я промолчу и промолчит мой напарник, мы получим минимум срока (1 год), но я не могу узнать, как он себя поведет. Если он даст показания против меня, то мне также лучше дать показания, иначе я могу сесть на 5 лет. Лучше мне сесть на 2,5 года, чем на 5 лет. Если он промолчит, то мне тем более нужно дать показания, поскольку так я получу свободу. Точно так же рассуждает и участник B.

Нетрудно понять, что доминирующая стратегия для каждого из преступников - это дача показаний. Оптимальная точка этой игры наступает тогда, когда оба преступника дают показания и получают свой «приз» — 2,5 года тюрьмы. Теория игр Нэша называет это равновесием.

Неоптимальное оптимальное решение по Нэшу

Революционность нэшевского взгляда в том, не является оптимальным, если рассмотреть отдельного участника и его личный интерес. Ведь наилучший вариант - это промолчать и выйти на свободу.

Равновесие по Нэшу - это точка соприкосновения интересов, где каждый участник выбирает такой вариант, который для него оптимальный только при условии, что другие участники выбирают определенную стратегию.

Рассматривая вариант, когда оба преступника молчат и получают всего по 1 году, можно назвать него Парето-оптимальным вариантом. Однако он возможен, только если преступники смогли бы сговориться заранее. Но даже это не гарантировало бы этого исхода, поскольку соблазн отступить от уговора и избежать наказания велик. Отсутствие полного доверия друг к другу и опасность получить 5 лет вынуждает выбрать вариант с признанием. Размышлять о том, что участники будут придерживаться варианта с молчанием, действуя согласованно, просто нерационально. Такой вывод можно сделать, если изучать равновесие Нэша. Примеры только доказывают правоту.

Эгоистично или рационально

Теория равновесия Нэша дала потрясающие выводы, опровергнувшие существующие до этого принципы. Например, Адам Смит рассматривал поведение каждого из участников как абсолютно эгоистичное, что и приводило систему в равновесие. Эта теория носила название «невидимая рука рынка».

Джон Нэш увидел, что если все участники будут действовать, преследуя только свои интересы, то это никогда не приведет к оптимальному групповому результату. Учитывая, что рациональное мышление присуще каждому участнику, более вероятен выбор, который предлагает стратегия равновесия Нэша.

Чисто мужской эксперимент

Ярким примером может служить игра «парадокс блондинки», которая хотя и кажется неуместной, но является яркой иллюстрацией, показывающей, как работает теория игр Нэша.

В этой игре нужно представить, что компания свободных парней пришла в бар. Рядом оказывается компания девушек, одна из которых предпочтительнее других, скажем блондинка. Как парням повести себя, чтобы получить наилучшую подругу для себя?

Итак, рассуждения парней: если все начнут знакомиться с блондинкой, то, скорее всего, она никому не достанется, тогда и ее подруги не захотят знакомства. Никто не хочет быть вторым запасным вариантом. Но если парни выберут избегать блондинку, то вероятность каждому из парней найти среди девушек хорошую подругу высока.

Ситуация равновесия по Нэшу неоптимальна для парней, поскольку, преследуя лишь свои эгоистические интересы, каждый выбрал бы именно блондинку. Видно, что преследование только эгоистичных интересов будет равнозначно краху групповых интересов. Равновесие по Нэшу будет значить то, что каждый парень действует в своих личных интересах, которые соприкасаются с интересами всей группы. Это неоптимальный вариант для каждого лично, но оптимальный для каждого, исходя из общей стратегии успеха.

Вся наша жизнь игра

Принятие решений в реальных условиях очень напоминает игру, когда вы ожидаете определенного рационального поведения и от других участников. В бизнесе, в работе, в коллективе, в компании и даже в отношениях с противоположным полом. От больших сделок и до обычных жизненных ситуаций все подчиняется тому или иному закону.

Конечно, рассмотренные игровые ситуации с преступниками и баром - это всего лишь отличные иллюстрации, демонстрирующие равновесие Нэша. Примеры таких дилемм очень часто возникают на реальном рынке, а особенно это работает в случаях с двумя монополистами, контролирующими рынок.

Смешанные стратегии

Часто мы вовлекаемы не в одну, а сразу в несколько игр. Выбирая один из вариантов одной игре, руководствуясь рациональной стратегией, но попадаете в другую игру. После нескольких рациональных решений вы можете обнаружить, что ваш результат вас не устраивает. Что же предпринимать?

Рассмотрим два вида стратегии:

  • Чистая стратегия - это поведение участника, которое исходит из размышления над возможным поведением других участников.
  • Смешанная стратегия или случайная стратегия - это чередование чистых стратегий случайным образом или выбор чистой стратегии с определенной вероятностью. Такую стратегию еще называют рэндомизированной.

Рассматривая такое поведение, мы получаем новый взгляд на равновесие по Нешу. Если ранее говорилось о том, что игрок выбирает стратегию один раз, то можно представить и другое поведение. Можно допустить тот вариант, что игроки выбирают стратегию случайно с определенной вероятностью. Игры, в которых нельзя найти равновесия Нэша в чистых стратегиях, всегда имеют их в смешанных.

Равновесие Нэша в смешанных стратегиях называется смешанным равновесием. Это такое равновесие, где каждый участник выбирает оптимальную частоту выбора своих стратегий при условии, что другие участники выбирают свои стратегии с заданной частотой.

Пенальти и смешанная стратегия

Пример смешанной стратегии можно привести в игре в футбол. Лучшая иллюстрация смешанной стратегии - это, пожалуй, серия пенальти. Так, у нас есть вратарь, который может прыгнуть только в один угол, и игрок, который будет бить пенальти.

Итак, если в первый раз игрок выберет стратегию сделать удар в левый угол, а вратарь также упадет в этот угол и словит мяч, то как могут развиваться события во второй раз? Если игрок будет бить в противоположный угол, это, скорее всего, слишком очевидно, но и удар в тот же угол не менее очевиден. Поэтому и вратарю, и бьющему ничего не остается, как положиться на случайный выбор.

Так, чередуя случайный выбор с определенной чистой стратегией, игрок и вратарь пытаються получить максимальный результат.

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, которые принимают фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы стремятся сговориться, тогда как на других агрессивно конкурируют; использующие фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия спроса или издержек или когда новые конкуренты вторгаются на рынок и т.

Первыми провели исследование в области теории игр Дж.-Ф. Нейман и О. Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944). Они распространили математические категории этой теории на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирование в игре (на рийку), коалиционных соглашений и тому подобное.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - "игра с нулевой суммой", предусматривающий такой выигрыш, который состоит исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общая сумма пользы и потерь всегда равна нулю. Вторая категория - "игра с плюсовой суммой", когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. Иногда он образуется за счет наличия "выходного" (термин из карточной игры в бридж, который означает одного из игроков, который, делая ставку, не участвует в игре), совсем пассивного и часто является служащим объектом эксплуатации. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, "стремится максимально повысить функцию, переменные которой ним не контролируются". Если все игроки являются умелыми, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои намерения, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе. Многое зависит и от "контрхитрости".

Большое значение во время игры имеет рациональное поведение игрока, т.е. продуманные выбор и осуществление оптимальной стратегии. Важный вклад в разработку формализованного (в виде моделей) описания конфликтных ситуаций, особенно в определении "формулы равновесия", т.е. устойчивости решений противников в игре, внес американский ученый Дж.-Ф. Нэш.

Нэш Джон Форбс родился в 1928 г.. (Г.. Влуефилд, США). Учился в университете Карнеги-Меллона по специальности инженера-химика, освоил курс "международная экономика". Получил диплом бакалавра и одновременно магистра математики.

В 1950 г.. В ИИриястонському университете защитил докторскую диссертацию на тему "некооперативных игры". Начиная с 1951г. И на протяжении почти восьми лет Нэш работал преподавателем Массачусетского технологического института, проводя одновременно активную научно-исследовательскую деятельность.

С весны 1959 ученый заболел и потерял работоспособность. В 70-е годы он смог вернуться к своим математических увлечений, однако производить научные результаты ему было трудно. Нобелевский комитет в 1994 фактически наградил труд, написанная в 1949

Член Национальной академии наук США, Бконометричного общества и Американской академии искусств и академии наук.

Досконально изучив различные игры, создав серию новых математических игр и наблюдая за действиями участников в различных игровых ситуациях, Нэш пытался глубже понять, как функционирует рынок, как компании принимают связаны с риском решения, почему покупатели действуют именно определенным образом. В экономике, как и в игре, руководители фирм должны учитывать не только последний, но и предыдущие шаги конкурентов, а также обстановку на всем экономическом (игровом, например, шахматном) поле и многие другие важные факторы.

Субъекты экономической жизни - активно действующие его участники, которые на рынке в условиях конкуренции идут на риск, и он должен быть оправдан. Поэтому каждый из них, как игрок, должен иметь свою стратегию. Именно это имел в виду Нэш, когда разрабатывал метод, который впоследствии назвали его именем (равновесие Нэша).

Свое понимание стратегии как основного понятия теории игр Дж.-Ф. Нэш разъясняет на основе "игры с нулевой суммой" (он называет это "симметричной игрой"), когда каждый участник имеет определенное число стратегий. Выигрыш каждого игрока зависит от того, какие стратегии выбрал и он, и его противник. На основании этого строится матрица для нахождения оптимальной стратегии, которая за многократного повторения игры обеспечивает этому игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш). Поскольку игроку неизвестно, какую стратегию выберет противник, ему самому лучше (рационально) выбрать стратегию, которая рассчитана на худшую для него поведение противнике (принцип так называемого "гарантированного результата"). Действуя осторожно и считая противника сильным конкурентом, наш игрок выберет для каждой своей стратегии минимально возможный выигрыш. Затем из всех минимально выигрышных стратегий он выберет такую, которая обеспечит максимальный из всех минимальных выигрыш - максимин.

Но и противник, вероятно, подумает аналогично. Он найдет для себя наибольшие проигрыши во всех стратегиях игрока, а затем из этих максимальных проигрышей выберет минимальный - минимакс. В случае равенства максимина мини Максу решения игроков будут устойчивыми, а игра будет иметь равновесие. Устойчивость (равновесие) решений (стратегий) состоит в том, что отходить от выбранных стратегий будет невыгодно для обоих участников игры. В случае, когда максимин не равна минимакса, решения (стратегии) обоих игроков, если они сколько-нибудь угадали выбор стратегии противника, оказываются неустойчивыми, невривно-важен.

Общее краткое определение равновесия Нэша - результат, в котором стратегия каждого из игроков является лучшей среди других, принятых остальными участниками игры стратегий. Это определение основывается на том, что ни один из игроков изменением собственной роли не может достичь наибольшей пользы (максимизации функции полезности), если остальные участники твердо придерживаются своей линии поведения.

Свою формулу равновесия Дж.-Ф. Нэш многократно усилил, включив в нее как незаменимый фактор для выработки стратегий показатель оптимального объема информации. Этот показатель оптимальности он вывел из анализа ситуаций (1) с полным информированием игрока о своих противников и (2) с неполным информированием о них. Переведя этот постулат с математического языка на язык экономической, Нэш ввел неуправляемые переменные рыночных отношений как важный информационный элемент знания условий внешней среды. После этого равновесие Нэша стала методом, используется практически во всех отраслях экономической науки для лучшего понимания сложных взаимосвязей, - отметил в октябре 1994 во время объявления новых лауреатов Нобелевской премии по экономике А. Линдбек, член Шведской королевской академии и председатель Нобелевского комитета по экономике.

Применение равновесия Нэша стало важным шагом в микроэкономике. ее использование способствовало углубленному пониманию развития и функционирования рынков, обоснованию стратегических решений, принимаемых менеджерами различных фирм. Равновесием Нэша можно пользоваться при изучении процесса ведения политических переговоров и экономического поведения, в том числе на олигополистических рынках.

По пионерной анализ равновесия в некооперативных играх Нобелевская премия по экономике 1994 года было присуждена Дж.-Ф. Нэш в, Р. Селтену и Дж. Харшани. Начиная с классического труда Дж. Неймана и О. Моргенштер-на "Теория игр и экономическое поведение", неотъемлемой частью экономического анализа стало исследование стратегии взаимодействия экономических субъектов в условиях, когда для выработки собственной линии поведения необходимо учитывать действия другого суб " объекта (как это происходит, в частности, в шахматах, преферансе и других играх). Эти трое Нобелевских лауреатов внесли большой вклад в ответвление теории игр - теорию некооперативных игр (то есть игр, когда достигнута договоренность между участниками). Принципиальным моментом этой теории является концепция равновесия, используется для предсказания результатов взаимодействия.

Равновесие Нэша стала фундаментальным понятием теории игр.

Анализ дискретного выбора

К последней четверти ХХ в. доминировало мнение, что основную роль в поведении потребителей играют здравый смысл и расчет. Именно с учетом прежде всего здравого смысла потребителей сформулированы либеральные экономические теории. Экономисты этого научного направления считают, что рынок как система отношений между экономическими субъектами способен саморегулироваться и устанавливать справедливые цены на товары и услуги на основе здравого смысла.

Хотя либеральная экономическая школа дала миру больше научных достижений, чем конкурентная консервативна, однако ее теории имеют ограниченное применение, что признают и ее сторонники. Например, монетарнсты (они же либералы) пока не сумели аргументированно объяснить поведение инвесторов на международных финансовых рынках и огромные колебания цен на мировые сырьевые ресурсы.

Либеральный рыночный подход оказался слишком упрощенным для надежного прогнозирования потребительского спроса на услуги и товары в условиях, когда потребители имеют огромный выбор подобных товаров и при этом не ограничены в объемах закупок, поскольку сейчас в развитых странах чрезвычайно распространен потребительский кредит. Кроме того, либеральная теория не может объяснить, например, покупку американской семьей (или английском семьей) американского (или английского) автомобиля, в то время как корейский стоит дешевле. То есть эта теория не принимает во внимание национальные и другие особенности поведения потребителей, которые с точки зрения здравого смысла трудно объяснить.

Поэтому в последнее время ученые-екоярмисты все чаще говорят о появлении новой экономической теории, сложившейся непосредственно на основе данных о поведении потребителей, которую надо изучать с помощью статистических методов. Эта теория предлагает описание способа измерения полезности. Несмотря на то, что подобные оценки носят субъективный характер, именно субъективность определяет их ценность для реализации экономической политики. Многие экономисты даже прогнозируют, что именно теория поведения потребителей (известный автор - Д. - Л. Мак-Федден) будет в XXI в. основой для определения экономической и политической стратегии развитых государств.

Мак-Федден ДаниельЛитл родился в 1937г. (г.. Ралейг, штатГОвн.Каролина, США). Учился и работал в Миннесотского университете. В 1962 г.. Защитил докторскую диссертацию, работал ассистентом профессора экономики в Питсбургском университете, затем профессором экономики в Калифорнийском университете, где с 1991 г.. Руководит эконометрической лабораторией.

Опубликовал в соавторстве такие труды: "Очерки об экономическом поведении в условиях нестабильности" (1974), "Спрос на городское передвижения: поведенческий анализ" (1976), "Экономика производства: двойной подход к теории и практики" (1978), "Структурный анализ дискретных данных с економетричяимы приложениями "(1981)," Мик-роекономичне моделирования и численный анализ: исследование спроса в коммунальном хозяйстве "(1984)," Справочник по эконометрики "(т.4,1994), а также много научных статей.

В течение 1983-1984 гг. Был вице-президентом, а в 1985 г.. - Президентом Эконометрического общества. У1994 г.. Избирался вице-президентом Американской экономической ассоциации. Член Национальной академии наук США, Американских эконометрического общества и академий искусств и наук, Американская экономическая ассоциация наградила его медалью Дж.-Б. Кларка, Эконометрическое общество - медалью Р. Фриша.

Известно, что довольно часто микроданные отражают дискретные выборы - выборы среди конечного множества альтернативных решений. В экономической теории традиционный анализ спроса предусматривал, что индивидуальный выбор должен быть представлен непрерывной переменной, но такая трактовка не соответствует изучению поведения дискретного выбора. Предыдущими достижениями многих ученых эмпирические исследования таких выборов не были обоснованными в экономической теории.

Методология анализа дискретного выбора Д.-л. Мак-Феддена коренится в микроэкономической теории, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности - это способы описания потребительского выбора: если выбран набор услуг X при том, что набор услуг В доступен, то X должен иметь большую полезность, чем В. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение. Очевидно, что невозможно исследовать весь комплекс фактов влияния на выбор индивида, но анализ динамики изменений среди личностей с примерно одинаковыми характеристиками позволяет сделать достаточно объективные выводы.

Д.-л. Мак-Федден в сотрудничестве с Т, Домеником изучил поведение потребителей относительно регулярных транспортных поиздок1. В большинстве крупных городов у лиц, осуществляющих регулярные транспортные поездки, есть выбор: пользоваться общественным транспортом или ездить на работу автомобилем. Каждую из этих альтернатив можно рассматривать как набор различных характеристик: время нахождения в пути, время ожидания, имеющихся расходов, комфорта, удобства и тому подобное. Таким образом, можно обозначить продолжительность времени нахождения в пути для каждого рода поездки через х {, продолжительность времени ожидания для каждого вида поездки через х 2 и т. Д.

Если (хх, х2, Хя) представляет значение п различных характеристик автомобильных поездок, а (y1, y2 ... .. y п) - значения характеристик поездок на автобусе, то можно рассмотреть модель, в которой потребитель принимает решение о том, поехать ему автомобилем или автобусом, исходя из предпочтения одного набора указанных характеристик другому. Конкретнее можно предположить, что преимущества среднего потребителя в отношении указанных характеристик могут быть представлены функцией полезности вида:

где коэффициенты b и, b 2 i т. Д - неизвестные параметры. Любое монотонное преобразование этой функции полезности может описать потребительский выбор, однако с точки зрения статистики работать с линейной функцией значительно легче.

Предположим, что существует группа похожих по характеристикам потребителей, которые выбирают, поехать автомобилем или автобусом, основываясь при этом на конкретных данных о продолжительности времени поездок, о расходах и другие характеристики поездок, с которыми они сталкиваются. В статистике есть технические приемы, которые можно использовать для поиска значений коэффициентов Д, при и - 1, п, наиболее подходящие для исследовательской структуры выбора, осуществленного данной множественностью потребителей. Эти технические приемы статистики позволяют вывести оценочную функцию полезности для различных способов транспортного передвижения.

Мак-Федден и Доменик предложили функцию полезности вида:

где ТW - общее время ходьбы до автобуса или автомобиля или от него; ТТ - общее время поездки в минутах; С - общая стоимость поездки в долларах.

С помощью оценочной функции полезности удалось правильно описать выбор между автомобильным и автобусным транспортом для 93% домохозяйств взятой авторами выборки. Коэффициенты при переменных в изложенном уравнении показывают предельную полезность каждой такой характеристики. Отношение одного коэффициента к другому показывает предельную норму замещения одной характеристики другой. Например, отношение предельной полезности времени ходьбы пешком к предельной полезности общей продолжительности поездки указывает не то, что рядовой потребитель считает время ходьбы пешком примерно в 3 раза медленнее, чем время поездки. То есть потребитель был бы готов затратить 3 дополнительных минуты на поездку, чтобы сэкономить 1 минуту ходьбы пешком. Аналогично отношение стоимости поездки в общей продолжительности поездки указывает на выбор рядового потребителя относительно этих двух переменных. В исследовании рядовой пассажир оценивал минуту времени поездки на транспорте в 0,0411 х х 2,24 = 0,0183 долл. за минуту, что составляет 1,10 долл. в час. (Для сравнения - часовая зарплата среднего пассажира в 1967 г.. Составляла в сена 2,85 долл. В час.)

Такие оценочные функции полезности могут быть ценными для определения того, следует осуществлять какие-то изменения в системе общественного транспорта. Например, в приведенной выше функции полезности одним из важных факторов, объясняющих, чем руководствуются потребители в своем выборе, является продолжительность поездки. Городское управление транспортом могло бы при небольших затратах увеличить количество автобусов, чтобы сократить эту общую продолжительность поездки, но необходимо выяснить дополнительное количество пассажиров оправдает рост затрат.

Оперируя функцией полезности и выборке потребителей, можно сделать прогноз относительно того, какие потребители захотят совершать поездки автомобилем, а какие предпочтут автобуса. Это позволит получить некоторое представление о том, будет ли выручка достаточной для покрытия дополнительных расходов. Кроме того, можно использовать предельную норму замещения для формирования представления об оценке каждым потребителем сокращения времени поездок. По результатам исследования Мак-Феддена и Доменика рядовой пассажир в 1967 оценивал время поездки по ставке 1,10 долл. в час, он готов был заплатить 37 центов, чтобы сократить время поездки на 20 минут. Это число показывает степень выигрыша в долларах от более своевременного предоставления автобусных услуг. Наличие количественной меры выигрыша, безусловно, способствует принятию рациональных решений в сфере транспортной политики.

Еще один весомый вклад Мак-Феддена - это развитие в 1974 так называемого анализа условного логит. Модель предполагает, что каждый человек в жизни находится перед рядом альтернатив. Обозначим как X характеристики, связанные с каждой альтернативой, и как 2 характеристики лиц, исследователь может наблюдать с помощью имеющихся данных. Например, для изучения выбора способа путешествий, где альтернативой может быть автомобиль, автобус или метро, X может включать информацию относительно времени и расходов, тогда как X мог бы включать данные относительно возраста, дохода и образования. Но различия между индивидами и альтернативы папке, как между Х \%, хотя они незаметны исследователю, но именно они определяют индивидуальный максимально полезный выбор. Такие характеристики представлены случайными векторами ошибок. Мак-Федден предположил, что эти случайные ошибки имеют определенную статистическую дистрибуцию (распределение) среди населения, назвав ее дистрибуцией экстремального значения. В этих условиях (плюс некоторые технические предсказания) он продемонстрировал, что вероятность того, что лицо и выберет альтернативу /, может быть записана в виде многочленов логит-модели:

где e - основание натурального логарифма; b и b - параметры (векторы). В своей базе данных исследователь может наблюдать переменные X и Z фактически так, как индивид выбирает альтернативу. В результате ученый способен оценить параметры р и <5, использовав известные статистические методы. Мак-Федденивське дифференцировки логит-модели осталось новацией и признается фундаментальным достижением.

Модели обычно используются в исследованиях спроса на городские перевозки. Они также могут применяться на транспорте, когда планируется изучить эффективность политических мер, а также социальных реформ или изменений окружающей среды. Например * эти модели могут объяснить, как изменения в цене товаров улучшают их доступность, влияют они на демографическую ситуацию, на объемы путешествия, используя альтернативные способы передвижения. Модели также приемлемые для многих других сфер, в частности, в исследованиях выбора жилого помещения, места жительства или образования. Мак-Федден использовал разработанные методы для анализа многих социальных проблем, таких как спрос на бытовую энергию, телефонные услуги и обеспечение жильем людей пожилого возраста и тому подобное.

В результате своих исследований ученый пришел к выводу, что условные логит-модели имеют определенную особенность относительно вероятности выбора между двумя альтернативами, например путешествия автобусом или поездом, независимыми от цены других вариантов передвижения. Эта особенность, названная независимостью несвязанных альтернатив (ННА), нереалистично для статистического потребления. Д.-л. Мак-Федден изобрел не только статистические тесты для установления соответствия ННА, но и предложил общие модели, названные заключенным логит-моделями, которые предусматривают, что выборы индивидов могут быть сделаны в определенной последовательности. Например, при исследовании решений, касающихся места жительства и типа жилья, принято, что гражданин сначала выбирает микрорайон, а затем - тип жилого помещения.

Даже с этими обобщениями модели весьма чувствительны к определенным предсказаний относительно дистрибуции ненаблюдаемых характеристик среди населения. В течение последнего десятилетия Д.-л. Мак-Федден разработал имитационные модели (методы моделируемых моментов) для статистической оценки дискретного выбора моделей, которые допускают гораздо более основных предположений. Мощные компьютеры расширили практическую приспособленность этих численных методов. В результате дискретные выборы индивидов теперь могут быть описаны более реалистично, а их решения - предусмотрены точнее. На основе своей новой теории Мак-Федден разработал микроеконометрични модели, которые могут использоваться, например, для предсказания намерений той части населения, которая будет выбирать различные альтернативы. За развитие методики формального обработки индивидуальных статистических и экономических данных Мак-Феддена отмечено Нобелевской премией.

Д.-л. Мак-Федден в 60-е годы также изобрел эконометрические методы оценки производственной технологии и исследовал факторы, косвенно влияют на потребность фирмы в капитале и в рабочей силе. В течение 90-х лет талантливый ученый научно развил экономику природопользования, обогатил методическую литературу по оценке стоимости природных богатств, в частности исследовал потери общественного богатства вследствие нанесенных в 1989 г.. Убытков окружающей среде нефтяным пятном, движущейся от пострадавшего в аварии танкера "Exxon Valdez * вдоль побережья Аляски.

Лейтмотивом исследований профессора Д.-л. Мак-Феддена е попытки объединить экономическую теорию, статистические и эмпирические методы для решения с их помощью социальных проблем. Его научные разработки также помогают социологам и политикам оценить выбор голосующих, исходя из змьн в их доходах и др.

Мак-Федден первым предложил методологию анализа дискретного выбора, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности представляют собой способы описания потребительского выбора. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение.

Что же делать участвующим в игре агентам? Как им определить, какая стратегия лучше других?

Давайте для начала поставим перед собой более скромную цель: определить, какие стратегии точно не подойдут.

Определение 1.2 . Стратегия агента называется доминируемой, если существует такая стратегия , что

В таком случае говорят, что доминирует над .

Иначе говоря, стратегия доминируема, если существует другая стратегия, которая не хуже в каждой точке, при любых возможных комбинациях стратегий других агентов. Значит, нет вообще никакой причины предпочитать , и ее можно просто отбросить при анализе.

Пример 1.4 . Вспомним пример 1.2, в котором полковник Блотто собирался расставить войска на поле . Если проанализировать матрицу из примера 1.2, станет очевидным, что стратегии , и доминируются другими: например, стратегия окажется лучше любой из них. Разумеется, то же самое верно и для противника Блотто. Таким образом, матрица существенно сократится.


Конец примера 1.4 .

Пример 1.5 . В примере 1.3, в котором мы обсуждали конкуренцию по Курно, было очень много доминируемых стратегий. Таковыми были все стратегии : они гарантированно приносили неположительную прибыль , в то время как нулевая стратегия (, ничего не производить) гарантирует нулевую прибыль . Поэтому сразу можно было ограничиться анализом квадрата в качестве множества стратегий.

Конец примера 1.5 .

Правда, стоит заметить, что легко построить пример, в котором любая стратегия доминируема. Это будет значить, что некоторые стратегии эквивалентны, то есть доминируют друг над другом. В таких случаях хотя бы одну из них стоит оставить, а то совсем не из чего будет выбирать.

Продолжаем разговор. После доминируемых стратегий логично будет ввести доминантные стратегии .

Определение 1.3 . Стратегия агента называется доминантной , если всякая другая стратегия ею доминируется, то есть

Доминантная стратегия для агента - настоящее счастье. Ему вообще думать не надо: достаточно выбрать доминантную стратегию, все равно никакая другая ни при каком исходе ничего лучшего не даст.

Более того, если у всех агентов есть доминантные стратегии , то анализ такой игры закончится, не успев начаться. Можно с уверенностью сказать, что все агенты выберут свои доминантные стратегии .

Определение 1.4 . Равновесие в доминантных стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента стратегия является доминантной.

Такое равновесие является самым устойчивым из всех. В следующей лекции мы приведем пример из теории экономических механизмов, в котором возникает такое равновесие - так называемый аукцион Викри (см. теорему 2.1.

Но, к сожалению, счастье достижимо далеко не всегда. Ни в примере 1.1, ни в примере 1.2, ни в примере 1.3 никакого равновесия в доминантных стратегиях не получалось. Для каждой стратегии игрока там существовал профиль стратегий других игроков , в котором игроку было бы выгодно сменить на ту или иную .

Равновесие Нэша

В предыдущем параграфе мы обсудили, что если у агента есть доминантная стратегия , то ему вообще размышлять и беспокоиться не о чем: он может просто выбирать эту стратегию. Но что же делать участвующим в игре агентам, когда таких стратегий нет и не предвидится?

Тогда приходится учитывать не только свои собственные стратегии, но и стратегии других агентов. Учет этот приведет к понятию равновесия, сформулированному в 1950 году Джоном Нэшем .

Определение 1.5 . Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента выполняется следующее условие:

Иначе говоря, как и прежде, агенту невыгодно отклоняться от избранной стратегии . Но теперь ему это невыгодно делать не абстрактно, при любом выборе стратегий у других агентов, а только в конкретном профиле стратегий .

Пример 1.6 . Продолжаем рассматривать беднягу Блотто. Матрица игры полковника без доминируемых стратегий была приведена в примере 1.4. Из матрицы легко видеть, что если один игрок выбирает стратегию , то от выбора другого уже ничего не зависит, то есть можно сказать, что другому тоже нет резона отклоняться от стратегии . Все это значит, что для данной игры профиль стратегий находится в равновесии Нэша.

Конец примера 1.6 .

Приведем и непрерывный пример - поверьте, нас еще ждут подобные рассуждения, и пора привыкать к чуть более серьезному анализу.

Пример 1.7 . Вернемся к анализу конкуренции по Курно из примера 1.3. На этот раз мы не будем ничего упрощать: пусть цена задается неизвестной функцией , а себестоимость производства для каждой фирмы - неизвестной функцией . Чтобы найти равновесие Нэша, найдем функцию лучшего ответа. Прибыль компании определяется как

Чтобы определить максимум функции для фиксированного , нужно просто найти производную

и приравнять ее к нулю. Соответственно, равновесие Нэша достигается там, где обе фирмы выдают оптимальный ответ на стратегию противника, то есть на решениях следующей системы дифференциальных уравнений :


Оставим читателю удовольствие проверить, что в рассмотренном в примере 1.3 частном случае равновесием Нэша действительно будет точка пересечения прямых на рис. 1.1 .

Конец примера 1.7 .

В определении 1.5 упоминался странный термин " чистые стратегии ": а какими еще они бывают? Оказывается, что стратегии бывают не только чистыми, но и смешанными. Смешанные стратегии - логичное расширение понятия стратегии: давайте разрешим игроку не только выбирать одну из , но и делать из них более или менее случайный выбор.

Определение 1.6 . Смешанная стратегия для игрока в стратегической игре - это распределение вероятностей , где - множество всех распределений вероятностей над .

Смешанную стратегию также можно рассматривать как задание весов для каждой стратегии так, чтобы сумма (в непрерывном случае - интеграл ) всех весов была равна 1.

Бывают игры, где нет равновесий Нэша для чистых стратегий . Но оно всегда (в конечном случае) есть в смешанных стратегиях .

Пример 1.8 . Вспомним игру "камень-ножницы-бумага", матрицу которой мы уже выписывали в примере 1.1.

Очевидно, что никакого равновесия Нэша в чистых стратегиях здесь нет: для любой стратегии найдется кому ее опровергнуть. Но равновесие Нэша в смешанных стратегиях здесь имеется. Предположим, что второй игрок выбирает камень, ножницы или бумагу с вероятностью , а первый выбирает их с вероятностями , и . Тогда первый игрок выигрывает с вероятностью

а также проигрывает и делает ничью с той же вероятностью. Иначе говоря, если противник выбирает стратегию равновероятно, для игрока все стратегии эквивалентны. Поскольку игра симметрична, получается, что профиль смешанных стратегий

находится в равновесии.

Конец примера 1.8 .

Доказательство того, что равновесие в смешанных стратегиях всегда существует, следует из теоремы Какутани о неподвижной точке [ , ].

Теорема 1.1 (Какутани) Пусть - непустое выпуклое компактное подмножество евклидова пространства , а - многозначная функция на с замкнутым графиком, такая, что множество непусто, замкнуто и выпукло для всех . Тогда у есть

Статьи по теме: